
Smart Contract Data Monitoring and Visualization

Seng Kuang Yap1, Zhongli Dong1,2, Mark Toohey1,4, Young Choon Lee3, Albert Y. Zomaya2

Abstract—Blockchain technology has attracted significant
industry, academic, and governmental attention since its
emerged in 2008. Blockchain use cases are now being explored
by traditional, transaction-oriented businesses in the finance,
insurance, logistics and healthcare sectors to name a few. This
has expanded further with the widespread use of Internet of
Things (IoT) devices. Massive amounts of data are generated
by IoT devices and are recorded in the blockchain. While
blockchain provides many advantages, such as immutability and
transparency, its serialized nature makes impossible to read in
a single query. Multiple requests are required even for simple
tasks, such as displaying an account’s transaction history. This
further leads to the difficulty in understanding the data in the
blockchain. In this paper, we address the problem of smart
contract visualization in a real-time manner. To this end, we
design a visualization dashboard for smart contracts. A visual
aid for massive amounts of data helps users understand the
blockchain’s overall activities, uncover operational risks and
provide critical intelligence by visualising unusual activities and
connections. Such insights may enable the user to investigate
and predict any anomalies or reveal any network vulnerabilities.
Cattle farm selected as a use case because the voluminous data
can be acquired from IoT sensors on the farm cattle. Our
dashboard has been proven to help visualize the life cycle of
animals, the distribution of activities and time factor analysis.
This visualization can give a user a better perspective of the
token functions and results as well as animal management issues.

Index Terms—Blockchain, Ethereum, Smart Contract, NFT,
Internet of Things, Supply Chain

I. INTRODUCTION

Blockchain is a distributed ledger system that replicates

across multiple computers that are assembled in a peer-to-peer

network that follows a cryptographic protocol. The members

of the network are called nodes and each node has its own

copy of the blockchain that digitally records and stores the

data in unchangeable packages called blocks. [1].

The next significant development was the Ethereum

blockchain, which combined a distributed ledger and a Turing-

complete programming language used to write smart contracts.

Smart contracts were initially defined as automated legal

contracts that are, at least partly, capable of being expressed

and implemented in software [2]. Ethereum implemented a

global digital computer to execute peer-to-peer smart contracts

1 Seng Kuang Yap, Zhongli Dong and Mark Toohey are with Aglive
Research, PO Box 196 Geelong VIC 3220, Australia.

2 Zhongli Dong and Albert Y. Zomaya is with Center for Distributed and
High Performance Computing, School of Computer Science, The University
of Sydney, NSW 2006, Australia.

3 Young Choon Lee is with School of Computing, Macquarie University,
Sydney NSW 2109, Australia.

4 Mark Toohey is a law lecturer in the Master’s in Blockchain and Digital
Currency course at the University of Nicosia, Cyprus.

that can’t be shut down [1]. The Ethereum blockchain runs

these smart contracts using a virtual machine called the

Ethereum Virtual Machine (EVM). There are many usage

of smart contracts, such as digital identity, trade finance,

insurance, data recording and supply chain management.

In the meantime, Internet of Things (IoT) devices have

been increasingly adopted in data gathering for blockchain.

In particular, blockchain and related technologies enable IoT

devices to record immutable append-only data and make that

data publicly available for all of the network’s participants.

Massive amounts of data are generated by IoT devices and are

recorded in the blockchain by logging smart contract events.

Due to the serialized nature of blockchain, it is impossible to

read the event logs in a single query. This makes users struggle

to easily and timely understand the data in blockchain.

There have been several studies on blockchain visualization,

e.g., [3], [4], [5]. The systematic review presented by

Natkamon et al. in [3] shows that there have been various

attempts to visualise blockchain data [6]. However, the current

focus is on the visualization of token transactions. We are not

aware of any works that have addressed the visualization of

Ethereum smart contract data.

In this paper, we address the problem of smart contract data

monitoring and visualization in a real-time manner using the

cattle supply chain data that record on Ethereum blockchain.

We have chosen a cattle farm as a use case because the

voluminous data can be acquired from IoT sensors on the farm

cattle (Figure 1). Data visualization involve the generating

of graphical representation of data that aims to identify

the patterns, trends, correlations and outliers of the data.

Blockchain provide several benefits for data visualization,

thank to the high quality data, traceability, built-in anonymity

as well as large data volumes. However, challenges are faced

on data aggregations and real time visualization from the

blockchain due to the nature of data storage on blockchain.

To this end, we design a smart contract monitoring and

visualization dashboard that can visualize data in a real-time

manner. In particular, our dashboard solution incorporates the

monitoring of events and the recording of new data as soon as

the relevant new block was mined. Our smart contracts do not

record data in variables or in a data structure. Data is instead

stored in logs, that emit an event when the function is called.

This reduces the amount of gas required and is a cost-effective

means of storing data on an Ethereum blockchain.

Our event monitoring and dashboard system shown in

Figure 2 uses the extract, transfer and load (ETL) method

and also retrieves events emitted from the blockchain and

insert them into databases. The ETL process is streamlined

to reduce the time required to filter data from the historical978-8-3503-1019-1/23/$31.00 ©2023 IEEE

Fig. 1: Examples of the smart contract data logging.

blocks. Storing the event data in databases helps reduce the

time taken to constantly query the blockchain in order to

update the dashboard. Pseudo-data was generated to simulate

the flow of IoT data from the cattle farm.

Our dashboard has been proven to help visualize the life

cycle of tokens (and the linked animals), the distribution of

activities and time factor analysis. This visualization can give

a user a better perspective of the token functions and results

as well as animal management issues.

The remainder of this paper is structured as follows.

Section II gives background. Section III presents the proposed

system architecture and gives insights into the various

tools and technologies used to build the proposed system.

Section IV presents the dashboard results and discusses

workflow methodologies and issues regarding building the

dashboard. Section V reviews and discusses related work.

Section VI concludes the paper.

II. BACKGROUND

Blockchains are an immutable append-only database, where

each block consists of the header, the transactions, and the

previous block header. A new block header is formed by

hashing information in both the current block and the previous

block header. Due to the serialized nature of blockchain, it

is impossible to read the event logs from the blockchain in

a single query. Usually, multiple requests are required even

for simple tasks, such as displaying an account’s transaction

history. In contrast, a relational database stores information in

a structure that rarely changes. A cattle management database

can more easily record farm data e.g birth date; vaccinations;

death; diseases; veterinary treatments; pregnancy; and calving

etc. We can use the following query to obtain the cattle

vaccination history for the period between two different dates:

SELECT * FROM TABLE_NAME WHERE

DATE_OF_VACCINATION

BETWEEN ’STARTING_DATE_TIME’ AND ’

ENDING_DATE_TIME’;

However, such a simple query is more difficult on a

blockchain because a blockchain sequentially stores event log.

As shown below, a query on cattle vaccinations during a

certain period would have to search the blockchain logs block

by block. The build date recorded in the blockchain would

Fig. 2: The Overall Design of Event Monitoring and

Dashboard System.

also have to be compared with the STARTING DATE TIME

and ENDING DATE TIME to determine if cattle vaccinations

were recorded within that date range.

myContract.events.MyEvent({filter: {

DATE_OF_BUILD},fromBlock:0},

function(error, event){

console.log(event);

// Compare DATE_OF_VACCINATION with

STARTING_DATE_TIME and

ENDING_DATE_TIME

// Record cattle detail fulfil the above

requirement.

})

Clearly, considerable time is required to search the

blockchain’s event logs as we need to iterate through each

of the blocks in order to filter the query data and aggregrate

data for visualization.

Smart contracts and IoT devices can combine to monitor

and verify a product’s entire life cycle and its traceability.

This can be used to validate a food product’s source, its

quality, and even how it was handled. Stated another way,

the technology can be used to confirm the identity, location,

and condition of a particular item or shipment. It can also help

verify whether a certain product was ethically produced and

check the item’s sustainability credentials. Safeguarding and

improving product integrity will help improve supply chain

transparency by aiding the monitoring of food safety and

quality. Of course, IoT data stored in a smart contract is also

available for public verification.

There are two ways to record data on to the smart contracts.

One is in a variable state where values are permanently

stored and can be used to change smart contract functions.

Another way is to log it as smart contract events as an

unchangeable data structure that cannot be accessed directly

by smart contracts. The former storage cost 20 000 [gas] per

32 bits and the latter costs 8 [gas] per byte [7]. In this study,

data will be stored as smart contract events to reduce gas

costs. However, to visualized data stored in smart contract

events pose operational difficulties because of the blockchain’s

sequential nature [7].

III. ARCHITECTURE OF MONITORING AND

VISUALIZATION SYSTEM

Figure 3 illustrates the system architecture of a monitoring

and visualization system for Smart Contracts. It consist

of a front-end user interface that collects raw data from

IoT devices, and interacts with the back-end services. Data

cleaning aggregates and formats data and fixes or removes

any incorrect, corrupt, duplicate or incomplete data. A clean

daily data file will then be temporarily stored in the server

awaiting next step.

Parallel data flows from Daily Transaction to Blockchain

and Data Extraction and storage, have the advantage of

enabling data verification. This ensures all blockchain

transactions are also recorded in databases. In the proposed

architecture, it is assumed that data is cleaned and arranged

as per daily logs. Cleaning Data from IoT devices is outside

the scope of this paper as we are primarily focused on Daily

Transactions.

Our cattle use case adopts a modified version of an ERC721

smart contract to record on-farm IoT data and visualize the

smart contract events. It does not include activities related to

either the transfer of cattle along the supply chain or to the

tracking of beef products.

A. Daily Logs

We considered it important to protect the cattle producer’s

privacy. So, we have only used simulated data. Algorithms

were used to generate simulated data for token creation and the

recording of events that were common farm activities. We also

added in information insights gained from our Aglive platform

and various industry standards. Developers can generate their

own data to simulate other use cases.

Data acquisition methods and raw data cleaning methods

will not be addressed in this paper. Instead, it is assumed that

the data is cleaned, verified, and filtered before being written

into the blockchain.

The data generation application will generate daily data and

store the data as a daily log. Random simulated data will induct

new cattle onto the farm and also record some departures.

Each time an animal was inducted onto the platform a new

token was created. When cattle ceased to exist, the relevant

token was burned.

Eighteen activities were included in the algorithm including

record of birth; arrival; feeding; movements; and weight etc.

Those transactions were fed into the smart contract.

Other token activities will be discussed in detail in below.

B. Daily Transaction

The Daily Transaction task is to write daily logs into smart

contract. Daily Transaction consist of two parts: 1. transaction

signing; and 2. key management.

Transaction Signing: checks daily data entries and evoke the

corresponding smart contract functions. The daily transaction

application ensures the creation of new tokens or the addition

of activities to a new token will not be transacted in the same

block as a transaction will fail if the token does not already

Fig. 3: System Architecture.

exist. The application will only add the new transaction after

for several new blocks to be created.

Key management is the application for managing a nonce in

a transaction signing account that is used for all relevant cattle

farm transactions. Key management tracks the current nonce

value of the signing account. In this project, only one account

was used for transaction signing. However, key management

could be easily be expanded to enable signing by multiple

accounts.

C. Data Verification

Data verification ensures the transaction is successfully

recorded on the private Ethereum blockchain. Transaction

hashes created when the transaction is signed, can be used

to verify that data by retrieving transaction receipts from the

private Ethereum blockchain.

The two steps are: 1. the transaction hashes are checked to

ensure they match the number of transaction receipts. 2. the

status of the transaction receipts are checked to ensure their

’True’ status.

D. Ethereum Blockchain

Standard ERC721 token contracts were used in the proposed

system. The only modification was that instead of using

mapping to store activities related to each ERC721 token, we

emitted an event when any new activity was added to the

relevant token.

As mentioned, the induction of new cattle resulted in a

token being created and the death of any cattle resulted in the

burning of a token. Corresponding events were also emitted.

This method helped reduced our gas usage for data storage.

Three custom functions were added into the standard

ERC721 smart contract: 1. Create a token; 2. Add a token

activity; and 3. Deactivate or ‘burn’ a token.

Token Creation

A standard mint function from an Openzeppelin ERC721

contract was used when any new cattle were inducted. The

token count was increased and an event was emitted.

Token Deactivation

A standard burn function from an Openzeppelin ERC721

contract [8] was used as this method stops the token from

appending any new activity and emits a token deactivation

event.

1) Private Ethereum Blockchain

Vitalik Buterin’s paper [9] introduced Ethereum and

addressed several limitations of Bitcoin’s scripting language.

The main contribution of Ethereum over Bitcoin is that

Ethereum’s scripting language is Turing-complete. A private

Ethereum [10] blockchain and proof of authority consensus

system was achieved using Clique (Geth implementation).

This method provided availability and partition tolerance and

helped guarantee consistency.

Proof of authority consensus algorithms use minimal

computation because there is no mining required. [11].

The algorithm depends on one or more trusted authorities

(’validators’) who collect transactions from the transaction

pool, and then bundle them into blocks and add them into

the chain.

In some instances only a sole validator may be assigned.

If multiple validators are assigned, one of those validators

will be selected as the leader and their block proposal will

have the highest priority compared to the proposals by the

other validators. The other validators will check the validity

of the received block and after that process, each valid

block will be added into the blockchain. The leader can

be changed every round as the cycle continues [12]. Proof

of authority consensus is therefore considered suitable for a

private Ethereum blockchain.

2) Smart Contract

Smart contracts are created using Etherum’s Turing-

complete scripting language. They are an abstract layer that

enable anyone to create their own rules for ownership,

transaction format, and state transition functions. [13].

Ganache is a local Ethereum blockchain that is used to test

and deploy smart contracts. It does not require connection

with a real blockchain or use of an Ethereum client like Geth

or Parity. The Ganache-GUI which provides GUI app and

Ganache-CLIis a command line tools.

Ganache-Cli was used due to its ability to time travel. It hasa

special utility that allows time dependent or stateless tests on

a local Ethereum Blockchain.

A smart contract is also a self-executable block of a code

that is deployed on the blockchain. The code specifies the rules

that govern the interaction between the particular blockchain’s

participating parties. It is guaranteed to run in the same way

on all peer nodes.

While several languages are used for writing smart

contracts, the most common are: Solidity, Vyper, Yul and Yul+

[14]. All of these languages are compiled into bytecode before

being deployed on the EVM.

3) ERC721

Ethereum tokens are digital assets written by the smart

contract. Developers can build tokens on top of the Ethereum

blockchain. This allows developers to use the existing

Ethereum blockchain as the infrastructure that creates new

tokens instead of building a new blockchain for new tokens.

ERC721 is an open standard that enables a smart contract

to create unique (non-fungible) tokens. ERC721 provides

a minimum interface (abstract class in other programming

languages) for managing, owning, and trading unique tokens.

The ERC721 interface does not restrict the addition of extra

functions or token metadata.

4) Smart Contract’s Event

An event is a means of understanding changes in a smart

contract’s state. Ethereum allows the contract to log a change

of state to the blockchain in a specific format that allows the

EVM to easily retrieve and filter these events. An event can

carry data about any state changes.

E. Extract, Transform, and Load

The Extract, Transform, and Load application will monitor

the latest block, and filter blocks for events related to the smart

contract’s function call. These filtered events were stored on

a MongoDB database. Finally, the web application read data

from MongoDB to update the table in the front-end and push

the update to the dashboard so it could be shown to end users.

The database contained three tables for token creation, token

burning and for recording any activities added to a specific

token.

Web3py is used to build Extract, Transform, and Load

applications that extracted data from the private Ethereum

blockchain and stored it into MongoDB.

Two filters were created to monitor these respective events

in the latest block. Both filters sleep every two seconds

in between checking the block. ”add token activity event”

events and ”transfer” events are the two events emitted

by the smart contract. These two events were monitored

asynchronously.

”Transfer” events are part of the events that are

inherited from standard ERC721 contract, while the

”add token activity event” event is user defined in the cattle

contract. ”Transfer” events were also emitted by either the

create token or the deactivate token functions, depending on

the ”from” and ”to” addresses.

The create token function assigns a zero account to ”from”

and the user address to ”to” in the ”transfer” event.

The deactivate token function assigns the user address to

”to” and zero account is assigned to ”from” in the ”transfer”

function.

F. Databases

A database is used in the system to mitigate the need to

repeatedly filter the data in all the blocks.

Time stamps also play an important role in enabling data

visualization. By using databases, data can be selected based

on duration required by the user. With the ever-increasing size

of the chain’s data blocks, scanning al, the blocks for data

would take too long. Because the data is extracted from the

database, this modified system architecture is scaleable. even

if many users are simultaneously accessing the dashboard web

page.

MongoDB is document-based database. It is classified as

NoSQL as it does not have a predefined schema. It works

flexibly with different document types, such as JSON, BSON,

XML and BLOBs. However, there are a few drawbacks as

it does not support JOIN querying and it consumes memory

because key names have to be stored for each document. A

MongoDB database was used because it is the database used

by the Aglive platform.

For the purpose of this paper, three collections are created

in MongoDB. A collection is the equivalent of an Relational

Database Management System(RDBMS) table, as shown in

Table Ia, Table Ib and Table Ic.

token id timestamp block number
int int int

(a) create token event
token id timestamp block number
int int int

(b) deactive token event
token id activity timestamp block number
int string int int

(c) add token activity event

TABLE I: Schema for three collections and data type

Table Ia and Table Ib are used to record the creation and

deactivation of tokens, respectively.

All cattle were each given a unique token ID. A ”timestamp”

was recorded when a particular block was sealed or authorized

by a sealer. It represents the time when the token was created

or deactivated in the blockchain. It is important to note that

a timestamp is not the actual time when the event happened.

The ”block number” is the block where this token was created

or deactivated.

Table Ic creates a new row when a new activity is attached

to any active token. Activities are not created as an array as this

enables us to query a specific activity. Activities are recorded

along with the related ”timestamp” and ”block number” or

when an activity event emitted by the smart contract.

The ”block number” is important for data verification as

activities are not stored in the smart contract’s variables. Gas

use was reduced by storing activity data when an event was

emitted instead of storing a variable in the smart contract. The

”block number” is also used to verify whether the data stored

in the database also exists on the private Ethereum Blockchain

without having to filter the whole blockchain.

G. Front-end

Front-end was built using Python 3 libraries as they contain

a number of useful data manipulation and chart plotting

packages and that led to easier and faster development.

1) Python 3

Python 3 is a popular high-level programming language

that can handle various programming tasks such as numerical

computation, web development, database programming,

network programming, parallel processing, etc. It is an

interpreted language. Portions of the code can be tested on

the command line before it is incorporated into the program.

There is no need for compiling or linking.

Python 3 was also used for data extraction, data

manipulation, data analysis, and data plotting. Multiple

standard and external Python3 packages such as Web3py,

Plotly and Streamlit were used. These packages will be

discussed below.

2) web3js and web3py

Web3js is a collection of libraries that allow users to

interact with the Ethereum blockchain. Three Ethereum node

deployment methods are available for Web3js to interact with

Ethereum blockchain: HTTP; web socket; and inter-process

communication. Web3py, a Python implementation of Web3js,

was used on this project.

3) plotly

The Plotly library is an interactive, open-source plotting

library that supports over 40 unique chart types covering a

wide range of statistical, financial, geographic, scientific, and

three-dimensional use-cases.

Plotly is built on top of the plotly.js JavaScript library as

this enables Python users to easily create interactive web-based

visualization. These visualization can be displayed in Jupyter

Notebooks, as a stand alone HTML files, or they can be served

as part of web applications by using the Dash framework.

The Plotly library is sometimes referred to as ”plotly.py” to

differentiate it from the JavaScript library.

4) streamlit

Many open source web frameworks are available, such as

Flask, Django, Tornado, etc. These web frameworks provide

flexibility when building the web user interface design.

However, incorporating visualization into these frameworks,

requires integration of the web framework with the plotting

framework.

Streamlit on the other hand provides a convenient way to

create web applications when it is integrated with popular

visualization frameworks. Streamlit is a fast development

Fig. 4: Dashboard

tool for proof of concept that supports various data

manipulation and visualization frameworks, such as pandas,

matplotlib, seaborn, altair, plotly, Dash and bokeh. They enable

presentable front-end dashboards to be created with only

limited front-end development knowledge. The disadvantage

is that Streamlit does not have the flexibility of a dynamic

dashboard panel.

We used Streamlit for our dashboard due to its simplicity

and short learning curve. We simplified the design by creating

a refresh button on the dashboard to enable a user to query

new data from database directly into the dashboard.

IV. EVALUATION

In this section, we present various dashboard data to

demonstrate the efficacy of our visualization dashboard.

The use of ETL application and database data has eliminated

the need to search and filter the blockchain - a process

that would have required multiple passes just to perform

a simple data query. This method has reduced dashboard

query data required to plot charts and greatly improved the

user experience, especially by reducing the dashboard loading

times.

The architectural design responding to user requests was

showcased using multiple charts and data tables. Some

selected dashboard panels are discussed in this section

(Figures 4 and 5). The dashboard is interactive with real-time

data with the use of a refresh button that reduces CPU usage.

However, an automatic refresh can be implemented.

Every plot has a zoom feature to enable the user to easily

increase the plot size. The modular form of Streamlit [15]

allow users to organize the dashboard chart and table based

on their preferences.

The dashboard 4 highlights three important token statistics.

Each token represents and actual animal of the particular farm.

Total Tokens is the total number of tokens minted in the smart

contract. Total Active Token is the number of cattle currently

on the farm. Total Deactived Tokens are the token that have

been burned or tokens for animals that are no longer alive.

Together these statistics give a snapshot of farm activity.

Other cattle events can be recorded and shown: e.g. genomic

testing, health treatments, animal movements, custodial

transfers of animals to sale-yards etc, as well as feeding

event where animals are grain fed. It should be noted that we

disabled ”feeding” and ”moving” activities in our test plots as

(a)

(b)

(c)

Fig. 5: Other Panels of the Dashboard:(a) Overall Activities Pie Plot and Overall Activities Bar Chart. (b) Pie Plot of

Activities with Selected Years. (c) Tokens’ Activities Timeline

they are high frequency activities. Once a token is deactivated,

no further event data can be stored against that token.

When you are reviewing the charts, it may be helpful to

review the raw data used to plot the chart. Our design include

a raw data table with Unix time stamp format and date time

format. Data fields with ”NaN” are activities that did not

happen to the cattle. You may notice that some cell entries

list a timestamp, as such activities happened numerous times.

Only the top five rows of the table are shown in order to save

space.

The Overall Quantities (2021-2027) table in Figure 4 shows

all activities over the years since the smart contracts were

deployed. These figures can be combined with the farm’s cost

structure to determine the operating costs. Of course, it also

highlights the most costly activities.

Figure 5a shows the percentages pie chart and quantity bar

chart for various activities. These charts are plotted using data

from Table Overall Activities Quantities (2021-2027).

Comparing activities between years is helping as an

understanding trends may inform farm management decisions.

Figure 5b allows user to select and compare annual activity.

Due to the fixed panel size, the chart size will be reduced if

additional annual data is included.

Cattle life span and health data is crucial operational

information. It could highlight animals that should be culled

due to poor health, failure to conceive, or that have

conformation problems.

Our project in Figure 5c also show a token’s activity

timeline. Users can select the token of interest and view the

the recorded activities.

V. RELATED WORK

Sundara et al. [4] examined eight bitcoin blockchain

visualization attempts and gave a short description of the visual

representations and implementations. Sundara et al. used a

systematic mapping process to gather data through internet-

based data collection. All of the blockchain visualization

attempts we reviewed focused on monitoring real-time bitcoin

transactions and the data was displayed using using either

tree diagrams, hubs, or nodes. Python, WebGL, Javascript, and

other libraries were used as visualization tools.

Natkamon et al. [6] systematically reviewed seventy six

blockchain visualization attempts and classified them based

on analysis tasks and visual representations. Furthermore,

Natkamon et al. [6] extended their work to include other kind

of blockchains (e.g. Ethereum).

Natkamon et al. [6] divided blockchain data visualizations

into six different classifications: charts; time series; graphs;

multi-dimension visualizations; maps; and casual. The

majority of these visualizations involve: a transaction;

flow of money; account balances; account addresses; node

distribution; hash rates etc. [6].

Zhong et al. [5] realized that traditional blockchain

visualization tools just show the information in tabular and

textual forms. These forms are limited in their ability to help

a novice user understand cryptocurrency transactions, mainly

because they provide insufficient information. [5]. Zhong et

al. introduced the multiple visualization schemes in their web

page for visualization block transactions and their SilkViser

paper. [5]. They separated the blockchain visualization into

block, transaction, and address pages. Questionnaire results

show that SilkViser helped novice users to understand

important concepts in bitcoin transaction systems and provided

advanced information for experienced users.

Nonetheless, none of the existing blockchain visualization

research covered streamlined smart contract data manipulation

and visualization.

VI. CONCLUSION

In this paper, we presented a method to visualize and

analyze events emitted from smart contracts, along with

proposed dashboard architecture and the related development

process. Our technology stack and development methodology

was also detailed. Cattle farming was selected as our use case

due to the high volume of data acquired from IoT devices.

We have also shown how cattle data can be managed on an

Ethereum blockchain.

The dashboard we have designed can help visualize the life

cycle of tokens (and the linked animals), the distribution of

activities, and how time factor analysis can be conducted. This

visualization can give a user a better perspective of the token

functions and results as well as animal management issues.

REFERENCES

[1] J. Kehrli, “Blockchain explained,” Netguardians [en lınia].[Data

de consulta: 25 de juny de 2017]¡ https://www. netguardians.

ch/news/2016/11/17/blockchain-explained-part-1, 2016.
[2] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen,

and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering, vol. 47, no. 10, pp. 2084–
2106, 2019.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” tech.
rep., Manubot, 2019.

[4] T. Sundara, I. Gaputra, and S. Aulia, “Study on blockchain
visualization,” JOIV: International Journal on Informatics Visualization,
vol. 1, no. 3, pp. 76–82, 2017.

[5] Z. Zhong, S. Wei, Y. Xu, Y. Zhao, F. Zhou, F. Luo, and R. Shi, “Silkviser:
A visual explorer of blockchain-based cryptocurrency transaction data,”
in 2020 IEEE Conference on Visual Analytics Science and Technology

(VAST), pp. 95–106, IEEE, 2020.
[6] N. Tovanich, N. Heulot, J.-D. Fekete, and P. Isenberg, “Visualization

of blockchain data: A systematic review,” IEEE Transactions on

Visualization and Computer Graphics, 2019.
[7] G. Wood et al., “Ethereum: A secure decentralised generalised

transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014.

[8] openzeppelin, “openzeppelin-contracts.”
https://github.com/OpenZeppelin/openzeppelin-contracts, 2020.

[9] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, 2014.

[10] V. Buterin et al., “Ethereum white paper,” GitHub repository, vol. 1,
pp. 22–23, 2013.

[11] S. Kaur, S. Chaturvedi, A. Sharma, and J. Kar, “A research survey
on applications of consensus protocols in blockchain,” Security and

Communication Networks, vol. 2021, 2021.
[12] P. K. Singh, R. Singh, S. K. Nandi, K. Z. Ghafoor, D. B. Rawat,

and S. Nandi, “An efficient blockchain-based approach for cooperative
decision making in swarm robotics,” Internet Technology Letters, vol. 3,
no. 1, p. e140, 2020.

[13] D. Vujičić, D. Jagodić, and S. Ranj.ić, “Blockchain technology, bitcoin,
and ethereum: A brief overview,” in 2018 17th international symposium

infoteh-jahorina (infoteh), pp. 1–6, IEEE, 2018.
[14] Ethereum Foundation, “Solidity documentation release 0.8.5.” https:

//buildmedia.readthedocs.org/media/pdf/solidity/develop/solidity.pdf,
2021.

[15] streamlit, “Streamlit.” https://github.com/streamlit/streamlit, 2021.

https://buildmedia.readthedocs.org/media/pdf/solidity/develop/solidity.pdf
https://buildmedia.readthedocs.org/media/pdf/solidity/develop/solidity.pdf

	Introduction
	Background
	Architecture of Monitoring and Visualization System
	Daily Logs
	Daily Transaction
	Data Verification
	Ethereum Blockchain
	Private Ethereum Blockchain
	Smart Contract
	ERC721
	Smart Contract's Event

	Extract, Transform, and Load
	Databases
	Front-end
	Python 3
	web3js and web3py
	plotly
	streamlit

	Evaluation
	Related Work
	Conclusion
	References

