
DAGBENCH: A Performance Evaluation Framework for DAG

Distributed Ledgers

Zhongli Dong1, Emma Zheng2, Young Choon Lee3 and Albert Y. Zomaya1

Abstract—Directed Acyclic Graph (DAG) has been emerging
as the so-called Blockchain 3.0 after Bitcoin (Blockchain 1.0)
and Ethereum (Blockchain 2.0). This new distributed ledger
technology is getting significant attention for its high performance
and low transaction fee. There have already been several notable
implementations, such as IOTA [1], Nano [2] and Byteball [3]. In
this paper, we present DAGBENCH as a performance evaluation
framework for DAG implementations. DAGBENCH provides a
number of sample workloads and adaptors that make effec-
tive and easy evaluation of different DAG implementations.It
allows any DAG implementation to be evaluated by adding an
adaptor. DAGBENCH allows to measure the performance of
DAG implementation in terms of throughput, latency, scalability,
success indicator, resource consumption, transaction data size and
transaction fee. We demonstrate the efficacy of DAGBENCH with
different DAG implementations. In particular, we have conducted
experiments, on Amazon EC2, with three popular DAG imple-
mentations: IOTA, Nano and Byteball. Our experimental results
provide the performance comparison between these implemen-
tations that helps developers/users effectively evaluate different
performance characteristics; and, this enables them to identify
bottlenecks and accordingly to improve performance.

Index Terms—Directed Acyclic Graph, Blockchain, Smart
contracts, Distributed ledgers, Benchmark

I. INTRODUCTION

Blockchain technologies have gained popularity for its

decentralization nature. Bitcoin [4] and Ethereum [5] are

two representative blockchains that have primarily contributed

to such popularity gain.These technologies have significantly

enabled several secure decentralized applications, such as

crypto-currency and smart contracts. However, the current

block-based data structure brings a number of issues, such

as poor performance and scalability, slow final confirmation

and centralization of powerful miners. To resolve these issues,

the Directed Acyclic Graph (DAG, see Figure 1) data structure

has been emerged and it has been increasingly adopted in the

field of Distributed Ledger Technology (DLT) [6].

DAG is a graph data structure that has emerged as a new

form of DLT after the popular blockchain technology [7].

It consists of individual transactions linked and formed as a

directed acyclic graph, without using the concept of blocks as

in blockchains. In particular, DAG removes block packaging

process resulting in resolving the well-known block creation

1 Zhongli Dong (zhongli.dong@sydney.edu.au) and Albert Y. Zomaya are
with Center for Distributed and High Performance Computing, School of
Computer Science, The University of Sydney, NSW 2006, Australia.

2 Emma Zheng (emma@tbsx3.com) is with TBSx3 Blockchain Lab, L5,
155 Clarence Street, Sydney NSW 2000, Australia.

3 Young Choon Lee (young.lee@mq.edu.au) is with Department of Com-
puting, Macquarie University, Sydney NSW 2109, Australia.

Fig. 1. DAG Structure.

bottleneck in, for example, Bitcoin and Ethereum. With such

advantages of DAG, several notable DAG implementations

have emerged, such as IOTA [1], Nano [2] and Byteball [3].

However, currently, there is a lack of performance evaluation

tools for DAG, more precisely, its implementations.

In this paper, we develop and present DAGBENCH (Fig-

ure 2) as a performance evaluation framework for DAG

implementations. DAGBENCH is a flexible and extensible

framework that provides a number of sample workloads and

adaptors for different DAG implementations. While the current

version of DAGBENCH has supports (i.e., adaptors) for three

popular DAG implementations (IOTA, Nano and Byteball),

such support can be easily extended for other implementa-

tions by adding corresponding adaptors. DAGBENCH uses a

number of performance metrics for the evaluation: throughput,

latency, scalability, success indicator, resource consumption,

transaction data size and transaction fee. We have imple-

mented two workloads: value transfer and transaction query.

New workloads can be added by implementing them in the

workload layer of DAGBENCH (Figure 2). To demonstrate

the capacity of DAGBENCH, we have conducted a comparison

study of three DAG implementations with two workloads.

Specific contributions of this paper are as follows:

• We design and implement a performance evaluation

framework for DAG distributed ledgers.

• We have released the framework for public use. 1

• We evaluate DAGBENCH on a real system (Amazon

EC2) with three representative DAG implementations:

IOTA, Nano and Byteball.

• We give comparative analysis between the three DAG

implementations in various performance metrics.

The rest of this paper is organized as follows. In Section II,

we introduce DAG distributed ledger and its three DAG imple-

mentations. In Section III, we present DAGBENCH. Section

IV presents experimental results followed by discussions in

Section V. We discuss related work in Section VI followed by

our conclusion in Section VII.

1https://github.com/TBSx3Australia/DAGBENCH

264

2019 IEEE 12th International Conference on Cloud Computing (CLOUD)

2159-6190/19/$31.00 ©2019 IEEE
DOI 10.1109/CLOUD.2019.00053

Authorized licensed use limited to: University of Tasmania. Downloaded on June 29,2022 at 04:48:40 UTC from IEEE Xplore. Restrictions apply.

(a) DAGBENCH architecture. (b) DAGBENCH engine.

Fig. 2. DAGBENCH.

II. BACKGROUND

In this section, we give a brief introduction of DAG dis-

tributed ledger followed by the description of three promising

DAG implementations, IOTA, Nano and Byteball.

Directed Acyclic Graph (DAG) is getting its momentum

with its advantages particularly of scalability and resource

efficiency over blockchains. The main difference between

blockchains and DAGs is that the former bundles transactions

in blocks and append them one after another while the latter

stores transactions as vertices of a graph [7]. In other words,

DAGs are blockless.

Transactions can be appended onto a DAG concurrently. In

particular, one transaction can have multiple predecessors and

successors. The DAG, therefore, progresses transactions im-

mediately and directly without waiting for block composition.

It also can add multiple transactions simultaneously to increase

system throughput and scalability.

In DAGs, every end user issuing a transaction also validates

previous transactions. DAGs remove the need for miners as in

block-based distributed ledgers (e.g., Bitcoin and Ethereum)

that consume huge amounts of resources, both of computing

and energy.

1) IOTA: IOTA is a value transfer platform designed for

Internet of Things (IoT). The underlying network is called

‘Tangle’, which is based on DAG [1]. In IOTA, every par-

ticipant/node in the network (more generally, DAG network)

has to approve two previous transactions in order to issue a

new transaction. The two transactions are selected through a

tip (a childless unit, similar to a leaf node2 in the traditional

graph/tree data structure) selection algorithm.

2Note that a node in a DAG should not be confused with a ‘node’ in a
DAG network. While the former is a vertex of a DAG data structure, the latter
is a compute node (or a server like an Amazon EC2 instance) that is a part
of a DAG network.

While smart contract is not supported by IOTA in its current

implementation, roughly 1 kilobyte of arbitrary data can be

included in the transaction, which can be utilized in scenarios

such as transferring IoT data between devices.

Currently, IOTA introduces ‘Coordinator’ to confirm trans-

actions. The Coordinator is an entity controlled by the IOTA

foundation, which issues zero-value transactions regularly,

called a Milestone. Using the Coordinator, consensus is

achieved through a rule that only the transaction referenced

by a Milestone is confirmed, and the others are not.

2) Nano: Nano is a value transfer platform based on an

architecture called ‘block-lattice’ [8]. With this structure, Nano

is not just one long chain like Bitcoin or IOTA; it is a

multi-chain structure where each user gets their own chain

that only they can append onto. There are two types of

transaction: ‘send’ and ‘receive’. The sender needs to create a

‘send’ transaction and the receiver needs to issue a ‘receive’

transaction to actually pocket that amount of money. When any

conflict occurs, ‘representatives’ will vote for the conflicts and

pick one authentic transaction.

Nano is famous for its high speed, but the transaction object

is quite simple. Any additional message is not allowed along

with the transaction. Smart contract is not supported, either.

3) Byteball: Byteball is a conditional smart payment plat-

form that enables human readable smart contracts. Data is

stored and ordered using DAG, a new transaction has to

reference earlier data units created by other users [3]. Different

from IOTA’s referencing of two units, Byteball encourages

referencing all tip transactions by paying more rewards, which

helps narrow the width of the network. In this way, users

need to pay transaction fee which is used for rewarding later

users who reference the unit. The amount of transaction fee is

decided by the amount of data the unit includes: 1 Byte (the

Byteball’s built-in cyptocurrency) is exactly the amount you

265

Authorized licensed use limited to: University of Tasmania. Downloaded on June 29,2022 at 04:48:40 UTC from IEEE Xplore. Restrictions apply.

pay for storing 1 byte of data in the ledger, meaning that the

more data you want to post, the more money it costs.

The units in Byteball network have total order, called main

chain. To build a main chain, Byteball creates an algorithm

that selects one parent of a unit as the ‘best parent’. We can

select one main chain starting from any tip (a childless unit)

of the DAG, then travel backwards in history along the best

parent links. If we start from another tip, we will build another

main chain. If those main chains ever intersect while they go

back in history, they will both go along the same path after

the intersection point. This point is called ‘stable point’ and

all the units on this same path are deemed as stable units,

meaning that they are confirmed. Once we have a main chain,

nonserial units can also have total order.

Since parent units might be created by an attacker, Byteball

introduces ‘Witnesses’ to periodically issue trusted transac-

tions to DAG. Witnesses are non-anonymous reputable people

or companies who are expected to behave honestly. When

selecting the best parent, the parent unit whose main chain

can yield greater witnesses level is considered as the best

one. Each user can select different Witnesses list based on

their knowledge, but Byteball rules that best parents must be

selected only among those parents whose witness list differs

from the childs Witness list by no more than one mutation.

The Witness is a trusted checkpoint which is similar to IOTA’s

coordinator, but IOTA only has 1 Coordinator and Byteball has

12 witnesses.

In Byteball, an address represents a definition, which is

a boolean expression. When a user signs a unit, s/he also

provides a set of authentifiers (usually signatures) which, when

applied to the definition, must evaluate it to true in order to

prove that this user has the right to sign this unit. Definitions

are written in JSON. With the definition, Byteball enables

applications such as conditional payment, Peer-to-Peer (P2P)

insurance and betting. Byteball supports the publication of

personal assets, which can be used as an Initial Coin Offering

(ICO [9]) platform.

III. DAGBENCH

DAGBENCH (Figure 2) is a performance evaluation frame-

work for DAG distributed ledgers, which allows users to test

different DAG implementations, with predefined workloads, in

a wide range of performance metrics.

A. Design and Implementation

Figure 2(a) illustrates the current DAGBENCH architecture.

To make all workloads and DAG implementations extensible,

DAGBENCH is designed in a modular fashion consisting of

a DAGBENCH engine, a DAG layer, an adaptation layer and

a workload layer. The actual implementation of DAGBENCH

has been realized using Node.js [10].

• DAGBENCH Engine: DAGBENCH engine reads a con-

figuration file and loads the corresponding workloads

and adaptors. In particular, it accepts three arguments:

net,work and env. These arguments indicate the network,

workload and environment for the test. Then an instance

of DAG network is initialized and a workload instance

creates the test. The detailed steps performed by the

DAGBENCH engine are shown in Figure 2(b).

• Workload Layer: Workloads are defined in this layer.

The workload class extends the workload interface and is

called by the DAGBENCH Engine. The workload layer

contains the tests implemented for typical DAG network

scenarios. We implement value/data transfer workload

and transaction query workload. Developers can write

their own test cases via implementing the workload

interface.

• Adaptation Layer: The adaptation layer is a bridge to link

a DAG network—created by a particular implementation

like IOTA, Nano and Byteball—to DAGBENCH work-

load and engine. A DAG-interface is defined in adaptation

layer, a DAG adaptor implements this interface with its

corresponding SDK or RESTful API.

• DAG Layer: A DAG network environment is established

in the DAG layer. The configuration files for different

workloads are to be defined in this layer.

B. Evaluation Metrics

To evaluate the performance of different DAG implementa-

tions, we define the following metrics:

• Throughput: It is measured as the number of processed

transactions per second.

• Latency: It is measured as the response time per transac-

tion.

• Scalability: As DAG often deals with potentially a large

number of distributed participants (‘nodes’ in the context

of DAG network), scalability is one of key performance

metrics. The scailability of a given DAG implementation

is measured as the changes in throughput and latency

when increasing the number of nodes.

• Success indicator:

– Confirmation rate: It is measured as the number of

confirmed transactions per second.

– Reception rate: It is measured as the number of re-

ceived transactions per second; this metric is specific

to Nano.

• Resource consumption:

– Memory: It is measured as the total memory usage

of a full node3.

– CPU usage: It is measured as the peak CPU usage

rate of a full node.

– Network traffic: It is measured as the peak network-

in and network-out of a full node, in terms of the

number of bytes.

• Transaction data size: It is measured as the maximum

data size that can be included in a transaction.

• Transaction fee: It is measured as the minimum transac-

tion fee that must be paid for a transaction.

3A full node in distributed ledgers is a participating node that contains the
‘full’ history of transactions in contrast to a light node that contains only hash
values of transactions.

266

Authorized licensed use limited to: University of Tasmania. Downloaded on June 29,2022 at 04:48:40 UTC from IEEE Xplore. Restrictions apply.

C. Workloads

Similar to blockchain, DAG can also be considered as an

append-only distributed database. We are focusing on the

performance of data creation and data retrieval.

We implement two workloads which can be executed

through client-side APIs to evaluate the performance of DAG

implementations: value/data transfer and transaction query.

1) Value/data transfer: This workload is a simple appli-

cation that transfers coins or arbitrary data from one user to

another user.

We implement a set of workload-clients (or simply clients)

which function as transaction issuers. Clients are sending

transactions during the entire course of test, so that the above

metrics are evaluated at an exact request rate. After the

first 10% of test duration, which is regarded as a period of

unprepared phase, the workload instance starts to count the

number of processed transactions and the number of confirmed

transactions. Test results including statistical information are

reported at the end of the test, i.e., the final report.

2) Transaction Query: This workload considers the per-

formance of a DAG network for historical data retrieval. We

implement two queries:

Query 1 (Q1): calculate the number of input transactions

and the number of output transactions for a given account.

Query 2 (Q2): calculate the balance for a given account.

In this workload, we pre-load the DAG network with

different numbers of transactions. We then use APIs to conduct

the defined queries and calculate the query latency.

IV. PERFORMANCE EVALUATION

In this section, we present performance evaluation results

of three DAG implementations (IOTA, Nano and Byteball)

obtained from experiments conducted using DAGBENCH.

A. Experimental environment

The experiments were run on the AWS cloud platform

(Amazon EC2). Each node was configured in an independent

EC2 instance allocated with 4 vCPUs, 16 GB of memory, 8 GB

storage, running Ubuntu Server 16.04 LTS (HVM) and SSD

Volume Type. The results are averaged over 5 independent

runs.

• For IOTA, we built the testnet environment with its

Docker image v1.4.2.4 and used its JavaScript library to

implement adaptors.

• For Nano, we built a Docker image in its ‘test’ model

and used its RPC command to implement adaptors.

• For Byteball, we built the testnet environment with its

official git repository for ‘hubs’ and ‘witness’, and used

its ‘byteball.js’ to implement adaptors.

B. Results: Value/data transfer

This section presents the test results of our first workload:

value/data transfer for three implementations. We measured

the performance of the DAG network with 8 nodes (i.e., 8

EC2 servers in our study) and 8 concurrent clients over the

period of 300 seconds. Each client sends transactions with a

request rate varying from 5 request/second (req/s) to 150 req/s.

15 30 40 50 60 70 90 115 150
0

10

20

30

40

50

60

request/s

tx
/s

IOTA

NANO

Byteball

Fig. 3. Throughput with 8 clients and 8 (DAG network) nodes.

1) Throughput and Latency: As shown in Figures 3 and 4,

the throughput and latency become in a poorer quality (lower

and higher, respectively) after a request rate of 60req/s. In par-

ticular, the peak throughput of IOTA—40 transactions/second

(tx/s)—is reached at a request rate of 60 req/s. The decreased

throughput under high loads is because that: (1) the high load

leads to a HTTP TIMEOUT error, which decreases the actual

request rate and (2) a high request rate increases the number

of new units generated concurrently; it also increases the tip

selection delay.

For Nano, the trend shows a similarity with IOTA. Nano

reaches 60 tx/s at peak where the request rate is 60 req/s.

The throughput is higher and the latency is lower than that

of IOTA. The gap between IOTA and Nano is because that

while IOTA has a tip selection delay to select two parents for

every new transaction, Nano has no tip selection delay due to

its block-lattice structure [2].

For Byteball, the throughput is much smaller than both

Nano and IOTA. For the testnet with 8 full nodes, the peak

throughput is around 2.75 tx/s when the request rate is 5 req/s.

When the request rate is larger than 40 req/s, the DAG network

does not respond. Byteball has lower throughput because local

database operations in Byteball implementation increase the

transaction processing delay [11].

2) Success indicator: Since there is a big difference be-

tween how different DAG implementations confirm a transac-

tion, we use different success indicators for different imple-

mentations to reflect successful transactions. Figure 5 shows

the success indicators for different implementations.

For IOTA and Byteball, we use ‘confirmation rate’ to

represent the number of transactions that are confirmed in

a second. For Nano, a transaction is confirmed when the

recipient’s balance increases with an amount of money carried

by this transaction. In our experiments, the recipient issues

‘receive’ transactions after all the transactions are sent to the

recipient. We then measured this duration for receiving all the

local transactions and used ‘reception rate’ to represent the

number of transactions that can be received in a second.

267

Authorized licensed use limited to: University of Tasmania. Downloaded on June 29,2022 at 04:48:40 UTC from IEEE Xplore. Restrictions apply.

15 30 40 50 60 70 90 115 150
0

100

200

300

request/s

se
co

n
d
s

IOTA

NANO

Byteball

(a) Maximum latency with varying request rates.

15 30 40 50 60 70 90 115 150
0

20

40

60

request/s

se
co

n
d
s

IOTA

NANO

Byteball

(b) Minimum latency with varying request rates.

15 30 40 50 60 70 90 115 150
0

100

200

300

request/s

se
co

n
d
s

IOTA

NANO

Byteball

(c) Average latency with varying request rates.

Fig. 4. Latency with 8 clients and 8 nodes.

15 30 40 50 60 70 90 115 150
0

0.2

0.4

0.6

0.8

1

request/s

tx
/s

IOTA

Byteball

(a) Confirmed transaction rates.

15 30 40 50 60 70 90 115 150
0

20

40

60

80

request/s

tx
/s

NANO

(b) Reception rates.

Fig. 5. Success indicator with 8 clients and 8 nodes.

IOTA introduces Coordinator to periodically issue zero-

valued transactions and confirm previous transactions. In our

experiments, we ran the coordinator every 60 seconds. The

result (Figure 5(b)) shows that confirmation rate decreases with

the growing request rate. This is because of the increasing

latency of the DAG network. The coordinator’s transactions

take longer delay to be attached by the DAG network. The

result also shows that the peak confirmation rate is around 0.8

tx/s, which is much lower than IOTA’s throughput. The low

confirmation rate is because that not all transactions can be

referenced and confirmed by the coordinator. The transactions

that are not referenced by any other transactions will remain

orphaned as the DAG network grows.

For Nano, the reception rate remains stable around 50 tx/s

with request rates below 70 req/s. After 70 req/s, around

18,000 transactions are received by the recipient. Receiving

these transactions via APIs leads to a TIMEOUT error.

For Byteball, witnesses issue transactions periodically to

validate previous transactions. The maximum confirmation rate

is around 0.95 tx/s when the request rate is 5 req/s. This low

confirmation rate is because of its low throughput as stated in

subsection IV-B1.

3) CPU, memory and network flow: Figure 6 shows the

memory usage, CPU usage and network flow. For IOTA,

the peaks of memory, CPU and network are in accordance

with the results of throughput and latency as discussed in

subsection IV-B1. It is shown that when the request rate is

higher than the saturated point, the number of transactions that

the DAG network can receive decreases. The peak memory

usage for a single IOTA full node is around 2,600 MB, the

peak CPU usage is around 68% and the peak network usage

(for both network-in and network-out) is about 123 MB/s.

For Nano, it consumes less resources compared with IOTA.

There is a slight increase for all types of resources with the

growing of request rate. The peak memory usage for single

Nano full node is around 150 MB, the peak CPU usage is

around 12% and the peak network usage is about 23 MB/s .

For Byteball, when request rate is 5 tx/s, the memory it

consumed is around 367 MB, the peak CPU usage is around

6% and the peak network usage is about 4.9 MB/s. While

Byteball has the lowest throughput, the memory is still higher

than Nano, which shows that the size of Byteball’s transaction

object is larger than that of Nano.

4) Scalability: For IOTA and Nano, we applied 60 req/s

in the experiments while we used 5 req/s for Byteball due to

its low throughput. Throughput, success indicators and latency

are compared in Figure 7.

For IOTA, throughput increases with growing node count.

DAG distributed ledgers have a feature that nodes process

the transactions asynchronously, which means that each node

can issue transactions concurrently and then broadcast the

transactions to other nodes in order to reach consensus. This

268

Authorized licensed use limited to: University of Tasmania. Downloaded on June 29,2022 at 04:48:40 UTC from IEEE Xplore. Restrictions apply.

15 30 40 50 60 70 90 115 150
0

500

1,000

1,500

2,000

2,500

request/s

M
B

IOTA

NANO

Byteball

(a) Memory used with varying request rates.

15 30 40 50 60 70 90 115 150
0

20

40

60

80

request/s

P
er

ce
n
t

IOTA

NANO

Byteball

(b) CPU used with varying request rates.

15 30 40 50 60 70 90 115 150
0

0.5

1

1.5
·10

8

request/s

B
y
te

IOTA-IN IOTA-OUT NANO-IN

NANO-OUT Byteball-IN Byteball-OUT

(c) Network in and out with varying request rates.

Fig. 6. CPU, memory and network flow with 8 clients and 8 nodes.

2 4 6 8 10 12
0

20

40

60

nodes

tx
/s

IOTA

NANO

Byteball

(a) Throughput with growing node count.

2 4 6 8 10 12
0

100

200

300

400

nodes

se
co

n
d
s

IOTA

NANO

Byteball

(b) Maximum latency with growing node count.

2 4 6 8 10 12
0

100

200

300

nodes

se
co

n
d
s

IOTA

NANO

Byteball

(c) Minimum latency with growing node count.

2 4 6 8 10 12
0

100

200

300

nodes

se
co

n
d
s

IOTA

NANO

Byteball

(d) Average latency with growing node count.

2 4 6 8 10 12
0

0.5

1

1.5

nodes

tx
/s

IOTA

Byteball

(e) Confirmation rate with growing node count.

2 4 6 8 10 12
0

20

40

60

80

nodes

tx
/s

NANO

(f) Reception rate with growing node count.

Fig. 7. Scalability.

increases the total throughput of the whole network, and

increases the scalability. Confirmation rate, on the other hand,

seems no increase with respect to the varying numbers of

nodes. Latency decreases from the 2-node (DAG) network to

the 4-node network and remains almost stable for the larger

networks, which means the latency is at least 100 seconds.

For Nano, the overall throughput for all networks is higher

than that of IOTA. There is a slight rise when the number

of nodes increases. The result (Figure 7(f)) shows that the

reception rate remains stable with increasing nodes since the

‘receive’ operation is only conducted on a single node.

For Byteball, the throughput increases with growing node

count since higher number of nodes can process transactions

asynchronously. The confirmation rate increases from the 2-

node network to the 10-node network, but remains stable from

the 10-node network to the 12-node network. This is because

transactions are issued at a fixed rate by the fixed number of

witnesses; this leads to a stable confirmation rate.

5) Transaction Fee: IOTA and Nano both have zero trans-

action fee. The transaction fee of Byteball is based on the size

of transaction object, i.e., the transaction issuer needs to pay

one Byte (the initial coin of Byteball) for one byte of data.

6) Transaction data size: IOTA can transfer around 1300

Bytes arbitrary data with each transaction object. For Nano,

there is no additional field to save any arbitrary data. For

Byteball, one can store any size of arbitrary data using ‘text’

269

Authorized licensed use limited to: University of Tasmania. Downloaded on June 29,2022 at 04:48:40 UTC from IEEE Xplore. Restrictions apply.

10 100 300 1000 10000

0

1

2

3

#transactions scanned

S
ec

o
n

d
s

IOTA

Nano

Byteball

(a) Query workload Q1.

10 100 300 1000 10000

0

5 · 10
−2

0.1

0.15

0.2

0.25

#transactions scanned

S
ec

o
n

d
s

IOTA

Nano

Byteball

(b) Query workload Q2.

Fig. 8. Latency of query workload.

message type or ‘data’ message type (i.e., unlimited). The

transaction fee is based on the size of data that users post:

the more data you post the more money you pay.

C. Results: Transaction Query

This section presents the test result of our second workload:

transaction query. We measured the query latency for two

query scenarios in pre-loaded networks with different numbers

of transactions from 10 transactions to 10,000 transactions.

1) Q1: The result of Q1 is shown in Figure 8(a). For

IOTA, query latency rises with the increase of pre-loaded

transactions. After the number of pre-loaded transactions is

larger than 300, the DAG network responds with a TIMEOUT

error. For Nano, query latency rises with the increase of pre-

loaded transactions and is smaller than that of IOTA. For

Byteball, query latency rises with the increase of pre-loaded

transactions. It responds with a TIMEOUT error when the

number of transactions reaches 10,000.

2) Q2: The result of Q2 is shown in Figure 8(b). Overall,

the query latency of each of IOTA and Nano remains nearly

the same while that of Byteball increases with respect to the

number of transactions. In particular, the query latency for

all three is below 50ms, except that of Byteball (0.23s) with

10,000 transactions. This exceptional case is due to the fact

that Byteball uses a relational database as its data storage;

and this causes a serious bottleneck with a high volume of

transactions resulting in such an exceptionally high latency.

V. DISCUSSION

All the three implementations, as DAG distributed ledgers

remove mining process which is criticised for its compu-

tational waste and the centralization of hash power. The

removal of mining enables a lower transaction fee. The DAG

structure improves scalability and performance by processing

transactions asynchronously and concurrently. All the imple-

mentations are pre-mined, meaning that their ledgers start

out with a certain amount of cryptocurrency that can never

change. While they have different advantages and scenarios,

these advantages also lead to new issues.

A. IOTA

Advantages and scenario. (1) In IOTA, money and data can

be sent together with a transaction, this is good for machine-

to-machine scenario which ranges from data market to supply

chain tracking [12]. (2) IOTA has a mechanism to trim ledger

size in a process called ‘snapshot’, this can reduce the ledger

size as the network grows.

Disadvantages and current issues. (1) Computational and

memory resource consumption is the highest among all the

three implementations. (2) In theory, the more transactions

over the network, the faster transactions get confirmed, but

more transactions cause congestion; this leads to delays in

confirmation rates and times [12]. (3) Valuable transactions

may become orphan when there are a large amount of trans-

actions. A reattachment mechanism is not implemented so

users need to reattach unconfirmed transactions themselves.

(4) Coordinator will not be removed until the network is large

enough. (5) A healthy network needs a large number of full

nodes, but there is no incentive for running a full node.

Future development. (1) IOTA foundation keeps optimiz-

ing the algorithm such as tip selection algorithm. (2) IOTA has

developed its own second layer called Flash Channels, but it

will need someone to host, maintain, and facilitate this second

layer, which introduces fees [12].

B. Nano

Advantages and scenario. (1) The performance result is

the best among the three: highest throughput and lowest

resource consumption. (2) The fast speed, ease of use and zero

transaction fee are good for the scenario of human-to-human

value transfer.

Disadvantage and current issues. (1) It cannot transfer

arbitrary data. (2) Representative system is regarded as a

potential attack vector, whereby a malicious entity may buy

up millions of dollars and carry out a voting attack [12].

Future development. (1) To reduce the size of database

size, ledger pruning has been introduced. It can be done via

pruning off old blocks and keeping only the frontier 1 or 2

previous for each account. (2) Instead of using current 4 types

of block (i.e., send, receive, change and open), it has proposed

the feature to move these 4 types to “Universal Blocks”. It will

make the programming interface simpler, improve internal data

operation and reduce the processing requirement to facilitate

light or hardware wallets.

270

Authorized licensed use limited to: University of Tasmania. Downloaded on June 29,2022 at 04:48:40 UTC from IEEE Xplore. Restrictions apply.

C. Byteball

Advantages and scenario. (1) Byteball enables a smart

contract which can be used in scenarios such as conditional

payment and P2P betting. (2) Byteball offers an untraceable

currency called Blackbytes whose transactions are not visible

on the public database; these transactions are sent peer-to-

peer instead. (3) Byteball enables customized assets; hence, it

is also an ICO platform.

Disadvantage and current issues. (1) The performance of

Byteball is the worst among the three implementations. (2)

There is a low incentive for running full nodes and becoming

a witness. As a result, currently most witness nodes are held

by the founder.

Future development. The founder has declared that the

low performance is because of the database operations in the

source code [11]. Code base is to be engineered and optimized.

VI. RELATED WORK

While the focus of blockchain research has been largely on

its applications, crypto-currency applications such as Bitcoin

and Ethereum, in particular, there have been only a handful

of studies on the performance of blockchains, e.g., [13], [14],

[15], [16], [17], [18], [19]. Besides, many of them focus on a

particular performance respect, such as scalability or security.

BLOCKBENCH [16] is probably the closest to our work.

BLOCKBENCH is a framework to evaluate the performance

of private blockchains. It supports Ethereum in a private en-

vironment, Hyperledger Fabric, Parity and Quorum. It comes

with two types of workload, macro benchmark workload and

micro benchmark workload. The macro benchmark workloads

is to evaluate the overall performance of blockchains which

include the YCSB KVStore and SmallBank OLTP task. The

micro benchmark workloads for evaluating performance of

individual layers including consensus layer, data model layer

and execution layer. The micro benchmark can gather the IO

usage and CPU usage during the evaluation process.

Hyperledger Caliper [19] is a blockchain benchmark tool

which allows users to evaluate different blockchain and gen-

erate the testing report. It supports all Hyperledger blockchain

product, including Fabric, Sawtooth, Iroha and Burrow. It has

been architected to three layers, Adaptation Layer, Interface

and Core Layer and Application Layer. It currently supports

the following performance indicators: transaction success rate,

transaction throughput, transaction latency and computing

resource consumption.

To the best of our knowledge, DAGBENCH is the first to

evaluate DAG distributed ledgers in a comprehensive manner.

Furthermore, its extensibility for various DAG implemen-

tations is also what distinguishes DAGBENCH from other

performance evaluation approaches/tools.

VII. CONCLUSION

In this paper, we present DAGBENCH as the first perfor-

mance evaluation framework for the DAG distributed ledger.

DAGBENCH contains creating new transaction and querying

history transactions workloads. We have demonstrated the

use of DAGBENCH to evaluate the performance of three

popular DAG implementations, IOTA, Byteball and Nano.

Our evaluation study has shown DAGBENCH’s capacity for

the comprehensive performance evaluation of different DAG

implementations. The performance evaluation results obtained

from our experiments have enabled us to make a number of

useful observations and effectively identify advantages and

disadvantages of the three DAG implementations. In our future

work, we plan to add several test tools to simulate community

participants to evaluate the financial sustainability in a crowd

computing environment and to detect flaws in decentralized

security mechanisms.

REFERENCES

[1] S. Popov, “The tangle. white paper,” 2016. [Online]. Available:
https://iota.org/IOTA\ Whitepaper.pdf

[2] C. LeMahieu, “Nano: A feeless distributed cryptocurrency network,”
URl: https://nano. org/en/whitepaper.(accessed: 04.04. 2018), 2018.

[3] A. Churyumov, “Byteball: A decentralized system for storage and
transfer of value,” URL https://byteball. org/Byteball. pdf, 2016.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] “Ethereum blockchain app platform.” [Online]. Available: https:

//www.ethereum.org/
[6] G. B. G. O. for Science, Distributed Ledger Technology: Beyond Block

Chain. Government Office for Science, 2016. [Online]. Available:
https://books.google.com.au/books?id=T3MqnQAACAAJ

[7] F. M. Benčić and I. P. Žarko, “Distributed ledger technology: Blockchain
compared to directed acyclic graph,” arXiv:1804.10013, 2018.

[8] C. LeMahieu, “Raiblocks: A feeless distributed
cryptocurrency network,” URL https://raiblocks.

net/media/RaiBlocks Whitepaper English. pdf, 2017.
[9] L. Ante, P. Sandner, and I. Fiedler, “Blockchain-based ICOs: Pure hype

or the dawn of a new era of startup financing?” Journal of Risk and

Financial Management, vol. 11, no. 4, 2018.
[10] “Node.js: A javascript runtime.” [Online]. Available: https://nodejs.org/
[11] A. During, “Existing problems and improvement directions

of byteball.” [Online]. Available: https://bbfans.org/2018/08/25/
byteball-flaws-and-future-direction/

[12] P. Ryszkiewicz, “IOTA vs NANO (RaiBlocks).” [Online]. Available:
https://hackernoon.com/iota-vs-raiblocks-413679bb4c3e

[13] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer,
“On scaling decentralized blockchains,” in Financial Cryptography

and Data Security, J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach,
M. Brenner, and K. Rohloff, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 106–125.

[14] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng:
A scalable blockchain protocol,” in Proceedings of the 13th Usenix

Conference on Networked Systems Design and Implementation (NSDI),
2016, pp. 45–59.

[15] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford, “Enhancing bitcoin security and performance with strong
consistency via collective signing,” in Proceedings of the 25th USENIX

Security Symposium (SEC), 2016, pp. 279–296.
[16] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.

Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management

of Data. ACM, 2017, pp. 1085–1100.
[17] B. V. P Thakkar, S Nathan, “Performance benchmarking and optimizing

hyperledger fabric blockchain platform,” in Proceedings of 2018 IEEE

26th International Symp. Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems (MASCOTS), 2018, pp. 264–276.
[18] “Hyperledger fabric.” [Online]. Available: https://www.hyperledger.org/

projects/fabric
[19] “Hyperledger caliper.” [Online]. Available: https://www.hyperledger.

org/projects/caliper

271

Authorized licensed use limited to: University of Tasmania. Downloaded on June 29,2022 at 04:48:40 UTC from IEEE Xplore. Restrictions apply.

