
Verify My Origin: Livestock DNA Fingerprinting

Through Blockchain Oracle

1st Amirmohammad Pasdar

School of Computing

Macquarie University

Sydney, Australia

amirmohammad.pasdar@hdr.mq.edu.au

2nd Young Choon Lee

School of Computing

Macquarie University

Sydney, Australia

young.lee@mq.edu.au

3th Paul Ryan

Aglive Pty Ltd

Geelong, Australia

paul@aglive.com

4rd Zhongli Dong

Aglive Pty Ltd

Sydney, Australia

andrew@aglive.com

Abstract—Blockchain, a type of distributed ledger technology,
has revolutionized the digital economy such as cryptocurrencies
and supply chain management with its transparency, immutabil-
ity, and decentralization properties. In addition, smart contracts
are introduced to the blockchain to provide programmability
removing third parties for administration. Although promising,
blockchains and smart contracts are closed technologies meaning
they have no interaction with the external world where real-
world data and events exist, i.e., off-chain data. It becomes
more challenging when the off-chain data is unstorable onto
the blockchain due to data volume and privately maintained by
third parties for security and confidentiality. In this paper, we
address the problem of enabling a private blockchain platform to
access privately owned sensitive off-chain data (i.e., DNA finger-
printing). This off-chain data is used for traceability of products
(i.e., products’ origin) along the supply chain with a real-world
livestock use case. To this end, we present a livestock blockchain
oracle (LBO) to mitigate the accessibility issue through a trusted
and convenient way of verifying purchasable products for live-
stock DNA fingerprinting verification. We have conducted an
evaluation study with real-world livestock data provided by third-
party service providers. Results based on the livestock product
information and registered DNA service providers show that LBO
is a reliable and responsive decentralized oracle blockchain for
verification.

Index Terms—Blockchain, Smart contracts, Blockchain ora-
cles, DNA Fingerprinting

I. INTRODUCTION

Blockchain is a distributive technology that has revolu-

tionized the digital economy and decentralized finance (Defi)

ecosystem. The use of blockchain can be seen in decentral-

ized applications (DApps), including but not limited to food

security [1]. A blockchain is a form of distributed ledger

technology where transactions are permanently stored onto

many nodes. Transactions are messages digitally signed by

cryptographic techniques for storing parameters/results and are

immutable records collected in the form of blocks chained

together through the hash. These blocks are appended to the

ledger by consensus algorithms such as proof of work (PoW)

or proof of stake (PoS) [2]. In addition, smart contracts are

known as event-driven and self-executable programs that are

Amirmohammad Pasdar (amir@aglive.com) and Zhongli Dong (an-
drew@aglive.com) are with Aglive Lab, P.O. Box 196, Geelong VIC 3220,
Australia.

compiled into bytecode. They are executed on the blockchain

by employing available resources that attract transaction fees.

Smart contracts and blockchain technology have con-

nectability issues meaning they have no access to real-world

information and events (off-chain data). This information

can be publicly available data (e.g., stock market data and

exchange rates) or privately owned sensitive information in

high volumes such as DNA fingerprinting in the agriculture

industry. Hence, they are closed technologies meaning they

have no interaction with the external world; therefore, the

usability of smart contracts is limited to the data on the

blockchain (on-chain data). There should be a mechanism

referred to as the “blockchain oracle” to bring the real-world

data in the blockchain and broaden the scope of smart contract

operation. Oracles (or data feeds) are third-party services

in the form of smart contracts deployed on the blockchain

that send and verify the external information to the smart

contracts [3]. They may consult with single or multiple sources

(decentralized oracles) for fetching the required information.

There have been several studies on blockchain oracles, e.g.,

[4]–[7], for transferring data to the blockchain, but most if

not all of them did not examine it from the private industry

perspective. Chainlink [4] is a general-purpose and token-

based framework for building secure decentralized input and

output oracles. Town Crier [5] is an enclave-based oracle that

employs Intel software guard extension (SGX) technology for

ensuring data integrity. Adler et al., [6] present a general-

purpose decentralized oracle referred to as Astraea that deals

with binary queries, and Al Breiki et al., [7] propose a

decentralized access control for the internet of things (IoT)

data that is assisted by blockchain and trusted oracles.

In this paper, we address the problem of enabling the private

blockchain platform to access sensitive off-chain data with a

case study for livestock DNA fingerprinting verification. DNA

fingerprinting provides the traceability of livestock products

(e.g., beef) at any point along the supply chain by comparing

its DNA profile with an initial privately maintained sample.

Third-party DNA services are already in use on farms for

livestock, and DNA testing units fitted to smartphones can test

and return a result in minutes without the need to send it out

to the lab. The challenge is to connect the blockchain platform

with these third-party DNA service providers holding privately

Oracle

Request

Response

Blockchain Livestock blockchain oracle
Data providers

Query

Selected data
providers

Outcome

Fig. 1: Livestock blockchain oracle consists of three smart

contracts; Oracle, Request, and Response.

owned sensitive data to provide a trusted and convenient way

of verifying purchasable products.

To this end, we develop a livestock blockchain oracle

(LBO shown in Figure 1) for DNA fingerprinting verification

with real-world livestock data provided by third-party service

providers. In particular, LBO employs three smart contracts:

Oracle, Request, and Response. Oracle contract is in charge of

registering the third-party APIs to be assigned to the queries

submitted to the blockchain. The Request contract handles

these queries, and it employs oracle reputation/performance

metrics for selection to obtain the requested data. Returned

results from the selected oracles are aggregated by the Re-

sponse contract, where the performance and reputation metrics

of participated data providers are adjusted.

We design and implement LBO that employs Web3j [8]

as a lightweight Java and Android library for working with

smart contracts and the Ethereum blockchain. We evaluate

the performance of LBO based on real-world meat product

information and a verified DNA service provider in terms of

gas1 consumption and turnaround time. Results present LBO

as a reliable and responsive decentralized blockchain oracle.

The paper is organized as follows: Section II briefly

overviews the related works on blockchain oracles and their

design patterns. In Section III, we present the livestock

blockchain oracle in detail.In Section IV, the oracle is evalu-

ated and we conclude the paper in Section V.

II. RELATED WORK

Blockchain oracles can be classified into three overlapping

categories in terms of source, information direction, and trust.

The source represents the origin of data, and the informa-

tion direction implies how information flows (inbound or

outbound) from/to external resources. Finally, trust can be

centralized (single source) or decentralized (multiple sources).

In addition, from a technical perspective, blockchain oracles

can be divided into two main groups based on how the

outcome is finalized and saved onto the blockchain. They

are referred to as voting-based oracles and reputation-based

ones. Voting-based oracles, e.g., [6], [9]–[14] employ partic-

ipants’ stakes for outcome finalization while the reputation-

based oracles, e.g., [4], [7], [15]–[18] consider reputation or

performance metrics in conjunction with authenticity proof

mechanisms for data correctness and integrity.

1Gas refers to the computational efforts required to execute specific
operations on the Ethereum network.

Astraea [6] is a general-purpose decentralized oracle for

binary queries. In this oracle, there are entities such as

submitter, voter, and certifier, each holding stakes. Voters

play low-risk/low-reward games while certifiers play high-

risk/high-reward games, and based on their outcomes and

whether they are matched, rewards/penalties are distributed.

Kamiya [10] provides an extension to Astraea, and in the

extended version, two propositions are submitted and based on

the different responses, rewards are distributed. Also, Merlini

et al., [9] present a paired-question oracle that employs two

antithetic questions for queries. If responses to queries are

matched, the submitter reclaims the bond, and voters are

rewarded or penalized if they agree or disagree with the

majority of answers, respectively. Nelaturu et al., [11] provide

a framework that employs a crowd-sourced voting mechanism

that uses strategies for oracles like Astraea [6].

Cai et al., [12] present a peer prediction-based protocol

that employs a non-linear stake scaling with a lightweight

scoring rule to control the rewards for the voters. Each report

receives a score that rewards are distributed to the top-scored

voters by considering the accuracy and degree of agreement

with peers. Buterin [13] shows a mechanism that is based

on the Schellingcoin concept for the creation of decentralized

data feeds. In this mechanism, submitted responses are sorted,

rewards are distributed to the users who provide correct

responses, and it is between specific percentiles. Velocity

[14] is a decentralized market for trading a custom type of

derivative option and uses a smart contract called PriceGeth

to fetch the price information in a real-time manner.

He et al., [16] present a scalable data feed service that uses

a reputation evaluation strategy assisted by TLSNotary [15] to

detect malicious nodes. Woo et al., [17] propose a distributed

oracle to import time-variant data into the blockchain by em-

ploying multiple oracles, and data integrity is assessed with the

help of Intel SGX. Al Breiki et al., [7] present a decentralized

access control for IoT data that is assisted by trusted oracles.

Wang et al., [18] propose an oracle based on Application-

Specific Knowledge Engines (ASKE) framework to acquire

and analyze information. It employs data analysis methods

on the collected data managed by authoritative websites via

web crawlers automatically. Last but not least, Chainlink [4]

is a general-purpose and token-based framework that employs

a blockchain-agnostic token that can simultaneously run on

different blockchains through via external adapters for various

data sources.

III. LIVESTOCK BLOCKCHAIN ORACLE (LBO)

This section describes the livestock blockchain oracle struc-

ture, and the problem is formulated. The symbols used in this

paper are described in Table I.

A. The Blockchain Events

The Ethereum blockchain employs events and logs to

facilitate the communication between smart contracts and

decentralized applications as events are methods to understand

a contract state changes. In this regard, smart contracts emit

TABLE I: Symbol description

Symbol Description

O Data provider set
R Request set
P Response set
oi A data provider
φi A data provider popularity
ri/pi A request and response
oe/re/pe Events of Oracle, Request, or Response
ω Response time window
τr/τr

i Response arrival time set and its time
ξp Majority outcome of responses

events and record logs to the blockchain when a transaction

is mined. In this case, the decentralized application (or the

smart contracts) is notified to continue the process of a specific

action. The livestock blockchain oracle uses the blockchain

events (e) as a means of communication.

1) Oracle smart contract events: Events of the Oracle

smart contract (oe) can be grouped into two classes; reg-

istration events and controlling events. The former notifies

the blockchain oracle, particularly the Request smart contract,

that a new data provider is registered on the blockchain and

can be employed to fetch requested query information. The

latter refers to controlling events that restrict the registered

data provider(s) in case of performance and trust issues. The

controlling events trigger functions that activate/deactivate the

registered data providers on the blockchain and inform the

decentralized application.

Since the blockchain oracle relies on the performance

metrics, the participated data providers may be banned to be

involved in the process for a certain time due to intermittent

issues, e.g., being unresponsive to the queries or being un-

qualified to retrieve the data. These data providers might be

activated again after screening their performance.

2) Request smart contract events: Incoming requests to the

blockchain oracle are managed by the Request smart contract,

and this smart contract emits two main events (re). When

a request is created, the corresponding event is emitted that

mostly maintains the information about the product identifier

and associated information.

Once a request is created, it should be assigned to registered

and qualified data providers for fetching the information

notifying the Response contract to take over the process. In

addition, it includes information about selected data providers

for the specific request.

3) Response smart contract events: When the Request

events (pe) are emitted, the Response contract will be in

charge of fetching the required information by the involved

data providers. It finalizes the feedback, returns the result

to the blockchain, and updates performance metrics of the

participated data providers. Thus, the Response smart contract

emits events about when data providers return responses and

whether the corresponding request becomes finalized.

Once data providers provide their responses, responses

should be aggregated to return the final feedback to the

blockchain and the application. The response contract will

emit an event notifying the application that the corresponding

request is finalized, attaching the final feedback and the

corresponding data provider.

B. Smart Contracts

The overall structure of the designed blockchain oracle (Fig-

ure 1) presents how smart contracts interact with each other

through emitted events on the blockchain. The designed oracle

has three smart contracts; Oracle, Request, and Response. It is

a form of a reputation-based oracle, meaning metrics of data

providers are computed and assessed for selection. It employs

trusted data providers for fetching data and submitting it to

the blockchain.

1) Oracle: This smart contract is responsible for registering

third-party data providers and maintaining their reputation

metrics. These reputation metrics are kept to assist requests

with selecting eligible data providers to obtain data.

Data providers are initially registered in the system, given

zero popularity value, and each data provider can be accessed

by its address. Each registered data provider has a deter-

ministic address on the blockchain whose popularity value is

managed by a function that employs the most significant bit

(MSB) procedure to increase/decrease the value with respect

to the performance of data providers.

Figure 2 illustrates how MSB is calculated; in Figure 2a,

the MSB is the largest index value in the binary format

representation. Figure 2b shows the comparison between MSB

and the natural logarithm, and the MSB mimics the logarithmic

behavior in the real world as Solidity yet to support fixed-

point number functionality. Hence, to control the popularity,

MSB is employed that gradually and efficiently manages

the value. This technique has two main benefits; firstly, the

difference between popularity of data providers is not prone

to sudden spikes and immediate changes. This feature enables

the blockchain oracle to rely on the median value of their

popularity fairly. Secondly, by considering Figure 2b, the

sensitivity of updating the popularity is not linear or scaled

to the number of served requests.

The Oracle contract also maintains the status of registered

data providers and the monetary incentives/penalties in the

form of balance that they may be given. Suppose the data

provider is untruthful or has low performance. In that case,

and regardless of their popularity value (recall the events of

smart contracts; pe and oe), the data provider is deregistered

and is not employed in the list of eligible data providers for

fetching data.

2) Request: This smart contract maintains the requested

query and holds information about assigned data providers

with their provided stakes. This smart contract also relies on

the Oracle contract to access the registered data providers.

When a request is created, it is given an identifier, including

the arrival time. The remaining information will be filled while

fetching the query data, such as the address of assigned data

providers and their stakes. Once the request is finalized, the

request status will be changed.

0 0 0 0 1 1 0 1

13 ConvertConvert

01234567
MSB

Index

(a) MSB

0 25000 50000 75000 100000
Request

0

5

10

15

P
op

ul
ar
ity

MSB
Log

(b) Popularity

Fig. 2: MSB and popularity of data providers; (a) MSB

definition and (b) comparison between MSB and the natural

logarithm for behavior.

Oracle

Request Response

Register

Query

Fetch Data

1

2

3

4

56

Selected oracles

7

Assigning
oracles

Updating
oracle
info.

Response
creation

Blockchain

Fig. 3: Processing a request on the livestock blockchain oracle.

Upon creating a request, an event will trigger the blockchain

function to assign registered data providers to the request. Data

providers are assigned to the specific request based on their

popularity values and registration status.

The Request contract employs the median value (m) tech-

nique for the selection of data providers within a set and

has been used in the literature [13]. Per each request, the

registration status of data providers is checked, the popularity

values of the eligible data providers are sorted, and the median

value is selected. This median value will act as a threshold

for assigning data providers to the request to fetch the data.

Hence, data providers with a larger popularity value than the

median will be selected to retrieve data. As the median value is

not affected by smaller or larger values, it becomes a suitable

metric for choosing the data providers.

O
r
i ← {∀ oi ∈ O ∃ m s.t. φi ≥ m} (1)

In Equation 1, m is the median value, and O
r
i is the list of

eligible data providers to be assigned to the request (ri). Once

the list of data providers is ready, the Response contract will

fetch the result for finalizing the outcome.

3) Response: The smart contract deals with fetching and

storing responses of data providers and returning the final

result (i.e., outcome) to the application.

Each response (pi) maintains the block time, defined as

a data provider’s response arrival time. There is a response

time window (ω) to ensure the data providers are responsive

Algorithm 1: Livestock blockchain oracle (LBO)

Data: Data providers (O), request (ri), responses (Pi),

response time window (ω)

Result: Outcome (γr
i)

1 Register new data providers, update O, and emit oe
2 Check the registration status of data providers in O

and sort the list w.r.t. popularity in ascending order

3 Compute median value m←Median(O) and notify

the Response contract by emitting re
4 Initialize P

r
i ← ∅, τ

r
i ← ∅ & O

r
i w.r.t. Equation 1

5 for oi ∈ O do

6 P
r
i ← poi & τ ri ← T ime(poi)

7 end

8 τp ← min
∀τ in τr

i

τ r

9 Compute ξp ← {∀ pi ∈ P s.t. |τ ri − τp| ≤ ω}
10 P

r
i ← {∀ pi ∈ P ∃ τ ri s.t. |τ ri − τp| ≤ ω & pi = ξp}

11 γr
i ←Median(Pr

i) and emit pe

in a reasonable time. Otherwise, they will be penalized (i.e.,

reducing their popularity and holding their stakes) and may be

deactivated after repeatedly being unresponsive.

Selected data providers by the Request smart contract will

be in charge of retrieving data for the Response contract. If

responses are not received within a specified time window,

they will be discarded, and their data providers will be penal-

ized. In addition, data providers will also be penalized when

their outcomes do not match with the majority. The majority

rule is a decision for choosing the one that more than half of

the outcomes support. Hence, for |P| outcomes received in the

specified time window, there is ξp representing the outcome

that more than half of data providers agree with. Equation 2

illustrates the increase (↑) or decrease (↓) of popularity (φi)

and their corresponding stakes considering the least arrival

time (τp) and the response arrival time of a data provider (τpi).

φi =

{

↑ ∀ pi : |τ
p

i − τp| ≤ ω & pi = ξp
↓ Otherwise.

(2)

Algorithm 1 in conjunction with Figure 3 illustrates how a

request is processed by the livestock blockchain oracle. Figure

3 shows that per each incoming request, eligible data providers

should be selected, and this eligibility is managed by Equation

1. Once the data providers are assigned to the request, the

Response contract is notified by the event. The Response

contract will maintain information about the retrieved data

by data providers and their arrival times. Per a specified

time window, the least arrival time of responses is detected

and is used to filter non-responsive data providers. These

data providers will be penalized by reducing their popularity

and withholding their stakes based on Equation 2, and these

updates will be saved onto the blockchain.

IV. EVALUATION

In this section, we evaluate the livestock blockchain oracle

performance. We first explain the simulation setup, and then

discuss the LBO performance result.

A. Simulation Setup

The smart contracts of the livestock blockchain oracle

are written in the Solidity programming language (v0.6.0

and compatible with higher versions) and are converted into

Java classes by Web3j library [8] to be compatible with a

mobile application. Web3j is a lightweight Java and Android

library for working with smart contracts and integrating with

nodes on the Ethereum blockchain [19]. Solc-js compiles the

smart contracts, and it is JavaScript bindings for the Solidity

compiler [20]. Solc-js outputs the contract application binary

interface (ABI) and a binary file (BIN) holding information

about the hex-encoded binary for the transaction request.

Moreover, Ganache CLI is employed as a local Ethereum

blockchain to test the decentralized application. It uses

ethereumjs for simulating full client behavior, and remote

procedure calls (RPC) functions [21].

Web3j

NetworkLBO API

Fig. 4: Livestock blockchain oracle relies on Web3j library to

communicate with the blockchain.

We use a sample real-world dataset that consists of essential

livestock information including the product identifier code

(PIC), RFID, and comprehensive analysis of its minerals.

Also, a third-party service provider recognized in industry

traceability is used as a trusted and registered data provider

for the blockchain oracle. The dataset is privately owned and

securely stored in their database due to the sensitiveness of

the information. Hence, an API is provided for passing the

product identifier for the dataset to output a binary result, i.e.,

valid or invalid. The API URL structure is shown in Equation

3 in which ϕ is the product RFID to be passed to the URL.

curl −X GET

“https : //tracebaseapi.azurewebsites.net/

RFID/ϕ”−H “accept : text/plain”
(3)

Randomly selected requests from the dataset are submitted

to the blockchain for verification. We evaluate the performance

of the designed blockchain oracle in terms of turnaround time

and gas usage on the local Ethereum blockchain.

B. Simulation Results

We evaluate the livestock blockchain oracle based on a

scenario in which the number of data providers is increased

for scalability, and the consumed gas is reported. The con-

sumed gas mainly shows that the designed blockchain oracle

will not hit the existing gas limit for execution. Due to

0 10 20
Request

2

4

6

M
ill
is
ec
on

d

1e2
Delay

(a) The data provider API latency
with very first request(s).

0 10 20
Request

4.5

5.0

5.5

M
ill
is
ec

on
d

1e1
Delay

(b) The latency after the short
initial spike period.

Fig. 5: Query response time of the third party API. The

significant delay at the beginning in Figure 5a is due to

the execution of underlying components, e.g., database query

execution. Figure 5b can be seen as a microscopic view of

Figure 5a after the short initial spiky delay.

the limitation of the provided datasets, its sensitiveness and

the way products are verified by the third party, the same

provider is re-registered for each scenario. Since Request and

Response contracts rely on the Oracle contract for interactions,

the Oracle smart contract is deployed first, followed by the

Request and Response smart contracts.

We consider increasing the number of data providers to 5 to

evaluate the scalability, and requests are randomly chosen from

the dataset. The scalability evaluation will provide insights into

how it may affect the performance of the designed oracle. Per

each finalized request, the consumed gas on the Ethereum

blockchain and the request turnaround time are reported.

Since the responsiveness of the third-party API affects the

designed blockchain oracle performance, the delay of queries

is computed and shown in Figure 5.

Figure 5 presents how responsive the data provider is in

terms of fetching the query data as the server load (i.e., the

response time) affects the turnaround time of the livestock

blockchain oracle. Hence, Figure 5a shows that there is a

significant delay in returning the feedback for the initial

request(s) submitted to the API due to execution of underlying

components, e.g., database query execution, with the average

∼710ms. Apart from the initial delays (with a volatile av-

erage latency between ∼680ms and ∼730ms), the API has

the average latency of ∼430ms with volatile response time,

including spikes that is shown in Figure 5b. The Figure 5b

points out that improving the response time explicitly affects

the user experience achieved via optimizing the database and

the webserver performance.

Figure 6 presents the livestock blockchain oracle perfor-

mance in terms of consumed gas and the outcome’s turnaround

time. Figure 6a illustrates the consumed gas for all the

scenarios where the number of data providers is increased.

This Figure 6a demonstrates that by increasing the number of

data providers for retrieving data, the gas consumption also

5 10 15 20
Request

2

3

4

5

6

G
as

1e5
Gas_1
Gas_2
Gas_3

Gas_4
Gas_5

(a) Gas usage.

5 10 15 20
Request

1.505

1.510

1.515

1.520

1.525

1.530

Ti
m

e
(m

ill
is

ec
on

d)

1e4
Time_1
Time_2
Time_3

Time_4
Time_5

(b) Outcome turnaround time.

Fig. 6: Livestock blockchain oracle performance, (a) gas

usage, (b) the scalability evaluation and how long it takes to

process a request. The number of participating data providers

is shown as x in Gas x (and T ime x).

increases, and the gas consumption nearly has a linear rela-

tionship with the number of data providers in the system. The

initial spike that is seen in the Figure could be related to the

significant delay for requests (Figure 5a) and the underlying

delays that exist between components of the blockchain oracle

such as Web3j, Ganache CLI, and mining time.

Moreover, Figure 6b presents the scalability evaluation and

shows how long the livestock blockchain oracle takes to

finalize a request. The turnaround time for requests on average

is ∼15s considering the underlying delay on the Ethereum

blockchain for mining. In addition, the overhead communica-

tion time between the application and the blockchain should

be considered. Increasing the number of data providers did not

significantly impact finalizing the outcome and its turnaround

time. The turnaround time seldom depends on the number of

data providers, and it can be seen from Figure 6b, for the

second half of the submitted requests (≥ 10), the turnaround

time of 5 data providers is better than 2 or 4 data providers. In

addition, the spikes in Figure 6b can be from the API response

delay shown in Figure 5b as well as underlying performance

issues with the Web3j and Ganache CLI [22]. In other respects,

the designed oracle has the potential to be converted into a

reliable and fast decentralized blockchain oracle.

V. CONCLUSION

Blockchain technology has revolutionized the digital econ-

omy and has changed the financial market in the last few years.

This disruptive technology is a distributed ledger technology

where data is shared among nodes connected over the internet.

Data state changes on the blockchain are permanently saved

onto the immutable ledger in a decentralized way. Blockchain

is enabled by smart contracts to provide programmability;

although promising, blockchains and smart contracts do not

have access to the external world. Hence, blockchain oracles

are introduced to resolve the blockchain connectability and

expand the usability of smart contracts. This paper presented

the livestock blockchain oracle (LBO) as a use case study

for livestock DNA fingerprinting verification evaluated by

real-world livestock datasets. The challenge was to connect

the blockchain platform with these third-party DNA service

providers holding privately owned sensitive data to provide a

trusted and convenient way of verifying purchasable products.

The designed blockchain oracle provided the connectability

feature and employed the performance metrics of third-party

data providers for finalizing the outcome. Results showed that

the LBO is a responsive decentralized oracle.

REFERENCES

[1] S. Ahmed and N. Ten Broek, “Blockchain could boost food security,”
Nature, vol. 550, no. 7674, pp. 43–43, 2017.

[2] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A
review on consensus algorithm of blockchain,” in 2017 IEEE Interna-

tional Conference on Systems, Man, and Cybernetics (SMC). IEEE,
2017, pp. 2567–2572.

[3] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016

aCM sIGSAC conference on computer and communications security.
ACM, 2016, pp. 270–282.

[4] S. Ellis, A. Juels, and S. Nazarov, “Chainlink a decentralized oracle
network,” https://link.smartcontract.com/whitepaper, 2017.

[5] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016

ACM SIGSAC conference on computer and communications security.
ACM, 2016, pp. 270–282.

[6] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania,
“Astraea: A decentralized blockchain oracle,” in 2018 IEEE Interna-

tional Conference on Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom) and IEEE Cyber, Physical

and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
IEEE, 2018, pp. 1145–1152.

[7] H. Al Breiki, L. Al Qassem, K. Salah, M. Habib Ur Rehman,
and D. Sevtinovic, “Decentralized access control for iot data using
blockchain and trusted oracles,” in 2019 IEEE International Conference

on Industrial Internet (ICII). IEEE, 2019, pp. 248–257.

[8] “Web3j: Web3 java ethereum dapp api,” https://github.com/web3j, 2021.

[9] M. Merlini, N. Veira, R. Berryhill, and A. Veneris, “On public decen-
tralized ledger oracles via a paired-question protocol,” in 2019 IEEE

International Conference on Blockchain and Cryptocurrency (ICBC).
IEEE, 2019, pp. 337–344.

[10] R. Kamiya, “Shintaku: An end-to-end-decentralized general-purpose
blockchain oracle system,” https://gitlab.com/shintakugroup/paper/blob/
master/shintaku.pdf, 2018.

[11] K. Nelaturu, J. Adler, M. Merlini, R. Berryhill, N. Veira, Z. Poulos,
and A. Veneris, “On public crowdsource-based mechanisms for a
decentralized blockchain oracle,” IEEE Transactions on Engineering

Management, vol. 67, no. 4, pp. 1444–1458, 2020.

[12] Y. Cai, G. Fragkos, E. E. Tsiropoulou, and A. Veneris, “A truth-inducing
sybil resistant decentralized blockchain oracle,” in 2020 2nd Conference

on Blockchain Research Applications for Innovative Networks and

Services (BRAINS). Wiley, 2020, pp. 128–135.

[13] V. Buterin, “Schellingcoin: A minimal-trust univer-
sal data feed,” https://blog.ethereum.org/2014/03/28/
schellingcoin-a-minimal-trust-universal-data-feed/, 2014.

[14] S. Eskandari, J. Clark, V. Sundaresan, and M. Adham, “On the feasibility
of decentralized derivatives markets,” in International Conference on

Financial Cryptography and Data Security. Springer, 2017, pp. 553–
567.

[15] TLSnotary, “Tlsnotary a mechanism for independently audited https
sessions,” https://tlsnotary.org/TLSNotary.pdf, 2014.

[16] J. He, R. Wang, W. Tsai, and E. Deng, “Sdfs: A scalable data feed
service for smart contracts,” in 2019 IEEE 10th International Conference

on Software Engineering and Service Science (ICSESS). IEEE, 2019,
pp. 581–585.

[17] S. Woo, J. Song, and S. Park, “A distributed oracle using intel sgx
for blockchain-based iot applications,” Sensors, vol. 20, no. 9, p. 2725,
2020.

[18] S. Wang, H. Lu, X. Sun, Y. Yuan, and F. Wang, “A novel blockchain
oracle implementation scheme based on application specific knowledge
engines,” in 2019 IEEE International Conference on Service Operations

and Logistics, and Informatics (SOLI). IEEE, 2019, pp. 258–262.
[19] Ethereum, https://ethereum.org/en/whitepaper/, 2020.
[20] “Javascript bindings for the solidity compiler,” https://github.com/

ethereum/solc-js, 2021.
[21] “Ganache,” https://www.trufflesuite.com/ganache, 2021.
[22] “Performance regression in ganache-cli,” https://github.com/trufflesuite/

ganache-cli/issues/677, 2021.

