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Abstract—The use of smart contracts for access control has

shown to be promising as it ensures integrity and governs

access to stored data, thanks to blockchain’s immutability.

While several recent studies have shown such usage, their

applicability to supply chain applications remains limited due

to less governance control capability and implementation com-

plexity with smart contracts. This paper proposes the use of

a tokenized role-attribute based access control (TRABAC) as

a two-level access control for supply chain applications. In

particular, TRABAC combines the simplicity of Role-Based

Access Control (RBAC) and the flexibility and fine-grained

capacity of Attribute-Based Access Control (ABAC). We con-

sider these methods coupled with the use of Non-Fungible

Token (NFT) as virtual assets in the supply chain. We also

define four roles or parties that can have distinct and varied

access rights. These roles are incorporated into TRABAC. The

efficacy of TRABAC has been evaluated in five access control

scenarios. Our experimental results show that TRABAC is

capable of delegating access to four different supply chain roles.

Importantly, TRABAC can effectively prevent unauthorized

access requests by accounts that lack a valid Level 1 role or

accounts that lack a valid token attribute or a tag in Level 2

of TRABAC.

1. Introduction

A typical supply chain application involves multiple
organizations or parties, from suppliers all the way along
the chain until good reach consumers. The flow of data and
information go back and forth between these organizations.
Additionally, the supply chain involves many in-house de-
partments with varying degrees of access or clearance for
huge organizations. According to Zhou et al. [1], effective
information sharing improves supply chain performance.
Moreover, lack of end-to-end visibility in the supply chain
may hinder the effectiveness of the supply chain [2]. Hence,
accessing real-time information from every supply chain
area is of the utmost importance.

Decentralized applications that use blockchain technol-
ogy ensure data is stored in a reliable, trustworthy, and
transparent manner. A leading blockchain for decentral-

ized application is Ethereum. Ethereum was designed as a
general-purpose programmable blockchain that uses smart
contracts [3]. Smart contracts are a self-executing digital
protocol that are designed to meet established conditions
[4]. Many recognise the potential benefits of combining the
use of smart contracts and blockchain technology to ensure
the integrity of stored data. However, the question remains
on how to best delegate access to the data stored on the
blockchain?

Recent studies address the use of virtual tokens to
validate and delegate access using smart contracts [5]–
[7]. Two general categories of token are used to govern
access control for virtual assets: fungible tokens and non-
fungible token (NFT). A fungible token is exchangeable as
each token’s value remains the same. Fungible tokens are
therefore similar to fiat currency, i.e. just as each note or
coin holds a certain value, each fungible token can also
be interchanged. The most widely used fungible token is
the ERC-201 standard [8]. In contrast, each NFT can’t be
interchanged as it is unique and can only be used to record
unique information in relation to a digital asset. The most
common and popular NFT is the ERC-721 standard [9].

In this paper, we study the use of virtual asset tokens to
achieve supply chain access control. TRABAC is a two-level
tokenized role-attribute based access control method for sup-
ply chain applications. TRABAC combines the simplicity
of Role-Based Access Control (RBAC) and the flexibility
and fine-grained capacity of Attribute-Based Access Control
(ABAC). It is coupled with the use of NFT that represent
virtual assets in the supply chain.

Specific contributions of this paper are:

• We design a custom ERC-721 token to represent
assets and attributes of both subjects and objects in
supply chain applications.

• We devise a token child called “Activity” to record
activities linked to the ERC-721 token.

1. ERC stands for Ethereum Request for Comment (ERC) with the
following number (e.g. 20 or 721) being the proposal identifier. The token
standard such as ERC-20 (fungible) and ERC-721 (non-fungible) define
the set of rules and protocols for issuing Ethereum tokens.
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• We define four roles to govern access to functions
in the supply chain application.

• We build the TRABAC prototype as a proof of
concept to show how the TRABAC model can be
implemented using ERC-721. 2

The rest of the paper is organized as follows. Section
2 covers background problems and existing solutions ad-
dressed in other research. In Section 3, we introduce the for-
mal definition of the proposed access control model called
TRABAC. In Section 4, we describe the prototype design
and the experiment setup. We present experimental results
in Section 5. Finally, we conclude the paper in Section 6.

2. Related Work

Access control is a system that delegates certain priv-
ileges to a subject over related objects. In the context of
a supply chain application, the subjects are users from
multiple organizations. The objects are protected data, in-
formation or documents stored in the system. There are
several notable recent studies [10]–[12]. Section 2.1 ex-
amines commonly-used access control models and their
applications. This is followed by a review of existing token-
based access control schemes in Section 2.2.

2.1. Access Control Model

Nakamura et al. [10] described three commonly-used
access control models: Role-Based Access Control (RBAC);
Attribute-Based Access Control (ABAC); and Capability-
Based Access Control (CapBAC). RBAC is coarse-grained
and more suitable for a small organization or a closed envi-
ronment. The use of RBAC is straightforward and easy to
manage [12]. These constraints pose significant obstacles to
the use of RBAC in a large-scale IoT network or application,
particularly in a scenario where multiple domains interact
without prior knowledge or trust between the domains [10],
[11].

In contrast, the delegation of access in ABAC is based on
a set of policies that support Boolean logic (e.g. IF-THEN).
ABAC policies are based on the attributes of the subject (e.g.
department, clearance level) and the attributes of an object
(e.g. type, sensitivity) in addition to environmental condi-
tions (e.g. time, location) [13]. Alternatively, the strength
of CapBAC lies in the ability of the subject to delegate and
revoke the access rights of other subjects, without the object
owner’s intervention, and using certificate-like capabilities
[10], [11].

2.2. Token-Based Access Control

Blockchain tokens can either represent any real-life as-
sets as a ’digital-twin’ for digital assets or as a means of
controlling admission to an application. We considered three

2. https://gitlab.com/aglive-research/TRABAC

recent studies that looked at token-based access control [5]–
[7]. Guo et al. [6] used the ERC-20 token standard, while
the other two papers used custom token designs [5], [7]. The
general idea of token-based access control is that the smart
contract will validate the token held by the subject when
considering every request for access to an object. Access
will be granted depending on the object access policies when
compared to the token’s metadata.

Guo et al. proposed the use of ERC-20 tokens to define
attributes in ABAC [6]. Their implementation involves mul-
tiple authority nodes where each authority node validates
and delegates one type of attribute or token. A subject may
possess multiple attributes, ergo multiple tokens. Similarly,
Almakhour et al. [5] also proposed a token-based access
control with ABAC that requires a federated agreement
among all of the involved parties before the smart contract is
deployed. Access is thus granted by comparing the subject’s
token with the attributes that were pre-defined in the smart
contract.

Liu C. et al. [7] proposed a fine-grained access control
method that employed the 5W1H (who, what, where, why,
when, and how) policies for IoT applications. The 5W1H
policies are minted with their digital asset called Tokoin.

3. TRABAC: Tokenized Role-Attribute Based

Access Control

This section sets out a formal definition of the proposed
TRABAC model.

3.1. Level 1: Role-Based Access Control (RBAC)

Level 1 of the proposed work uses a traditional RBAC
structure that involves administrators and users who hold a
range of different roles. Sandhu et al. [14], defines the use
of RBAC in Level 1 as:

• S, R, and P (subject, roles, and permission respec-
tively);

• SA ⊆ S ×R, many-to-many subject-to-role assign-
ment relationship;

• PA ⊆ R × P , many-to-many role-to-permission
assignment relationship.

Let R be the set of roles, P the set of permissions, and S
the set of subjects. The subject-role assignment relationship
is a Cartesian product of S and R, and permission-role
assignment is a Cartesian product of R and P . Both of them
define a many-to-many relationship between the elements
of the sets. Hence, RBAC is defined as, SA ⊆ S × R and
PA ⊆ R× P .

3.2. Level 2: Tokenized Attribute-Based Access

Control (ABAC)

The four main elements of ABAC are: subject; object;
action; and context or environment. Furthermore, the as-
signment of attributes for subject and object gives ABAC a
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finer-granularity compared to other access control models.
Assigned attributes, or attribute tags, can be adjusted to
deliver more precise and targeted access delegation. The
protected object and subject in the supply chain are asset.
We tokenize supply chain by creating a single unified token
called AgliveToken (AGL).

The basic token structure is:

AGLID[A] =
{

tType, tTag, tMeta
}

(1)

where the parameters for AGL are describes as:

• ID, the identifier for associated token.
• A, the address of token holder or owner.
• tType, token type =

{

subject, object
}

.
• tTag, token attribute tag assigned to the token.
• tMeta, metadata attached to the token.

As shown in Equation 1, a single token AGL owned by
A has its own ID with the description of three members.
The three members in token AGL are the type of token
(tType), the attribute tag of the token (tTag), and the
metadata attached to the token (tMeta). The metadata can
be in the form of a simple JSON file, image or link.

Once a block is added to the blockchain, that block of
data is permanently stored and neither it nor its contents
can be changed. This paper introduces a child to the token
called Activity (AC) that tracks any changes to a token that
had been added to the blockchain. It should be noted that
the use of AC should only be used for token type objects.

AC is describes as:

AC[AGLID] =
{

aType, aTag, aMeta
}

(2)

where the parameters are:

• AGLID, the AGL token ID attached to the Activity.
• aType, activity type.
• aTag, attribute tag assigned to the Activity.
• aMeta, metadata attached to the Activity.

Token AGL and AC have a one-to-many relationship
where each token can have multiple ACs. Equation 2 de-
scribes how AC is related to the token by its identifier,
AGLID. AC also includes a parameter aType or activity
type as a descriptive identifier. Similarly to token AGL, AC
can have an attribute tag (aTag) and metadata (aMeta)
attached to the AC.

4. Prototype Design

To test our proposed TRABAC model, we developed a
proof of concept prototype using a simulated local Ethereum
blockchain via Ganache, Truffle, and Solidity smart contract.
We also used OpenZeppelin ERC-721 smart contract and
its access control to speed up the process. OpenZeppelin
contracts are stable and have gone through security audits
by independent sources. Hence, it is safer to use an Open-
Zeppelin smart contract than to code a ERC-721 contract
from scratch. This approach may help avoid or limit some
security vulnerabilities.

The proposed work combines both RBAC by OpenZep-
plin and the previously defined AGL token as a two-level
access control. RBAC governs the first level by restricting
access to functions in accordance with a users’ role. The
second level validates access to the requested object by
authenticating the token attribute that is attached to either
the token subject or the token object.

4.1. Ethereum Account

The experiment setup used a simulated Ethereum
blockchain via Ganache CLI v6.12.1. We ran Ganache in
a deterministic mode to ensure we get the same Ethereum
addresses each time. By default, Ganache will produce ten
Ethereum addresses that hold 100 ETH each. From here-
inafter, the ten Ethereum addresses will referred as Address
A, B, C, D, E, F, G, H, I, and J.

4.2. Roles in RBAC

There are three approaches to use OpenZeppelin RBAC:
community; administered; and hierarchy [15]. We use the
administered approach as it employs the traditional RBAC
setup that includes both administrators and users. Also,
multiple roles can be defined or added to the contract with a
DEFAULT ADMIN ROLE for the contract owner. The sup-
ply chain workflow involves the interaction of subjects from
different organizations that are involved at different sections
of the supply chain. Consequently, this paper defines four
roles: DEFAULT ADMIN ROLE, MODERATOR ROLE,
CUSTODIAN ROLE, and USER ROLE. Table 1 describes
the use of each role to govern access control in a supply
chain.

TABLE 1. PROPOSED RBAC ROLES IN TRABAC.

Role Descriptions

DEFAULT ADMIN ROLE The DEFAULT ADMIN ROLE is
assigned to contract owner by default.
It can grant and revoke permissions to
any account.

MODERATOR ROLE The MODERATOR ROLE can create
and read token type subject.

CUSTODIAN ROLE The CUSTODIAN ROLE can create
and read token type object. The
CUSTODIAN ROLE can also create
and read attached activities (AC) for
token object.

USER ROLE The USER ROLE can read
information from token type object.

By default, the contract owner account will have the
role of DEFAULT ADMIN ROLE (Address A). The con-
tract owner will then delegate the role of MODERA-
TOR ROLE (Address B), CUSTODIAN ROLE (Address
C), and USER ROLE to other accounts (Address D, E, F,
G, H, I, and J). As a result, an account with MODERA-
TOR ROLE will have access to Level 2 of the proposed
model to create a token type subject. In comparison, an
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account with CUSTODIAN ROLE can create a token type
object. Finally, an account with USER ROLE can only read
information from a token type object.

Please note that these distinct roles did not have
overlapping access rights. In particular, while DE-
FAULT ADMIN ROLE could assign any address to any
role, the DEFAULT ADMIN ROLE itself cannot act in
those roles (i.e. create and read tokens). This restriction
was intentional as limiting the use of an account or address,
reduces the chance of an account being compromised.

5. Experiment and Results

This section presents five access control scenarios in
a supply chain. Section 5.1 demonstrates two scenarios
with the creation of token subject and token transfer by
the MODERATOR ROLE. In Section 5.2, we simulate two
scenarios where CUSTODIAN ROLE creates a token object
and also creates activities tied to the token object. Finally,
we show token access requests from all ten address accounts
in Section 5.3. Finally, we evaluate the cost of running the
TRABAC smart contract in Section 5.4.

Figure 1 provided a guideline for all figures related to
token creation, transfer, and access requests in this section.
It shows the actors involved in TRABAC where Admin is an
account with DEFAULT ADMIN ROLE while Moderator
is an account with MODERATOR ROLE. Custodian is an
account with CUSTODIAN ROLE, and User is an account
with USER ROLE. Additionally, Custodian and User may
hold AGL tokens as shown in fourth and sixth actor from
top left in Figure 1. Lastly, it also shows the relationship
between an Activity (or AC) and an AGL token.

Figure 1. Actors and elements in TRABAC.

5.1. Token Creation and Token Transfer by MOD-

ERATOR ROLE

In our supply chain simulation, Address A delegated the
MODERATOR ROLE to Address B. The purpose of the
MODERATOR ROLE is to create a token type subject with
a specific tTag and delegate the tokens to accounts with a
CUSTODIAN ROLE or USER ROLE. Consequently, the
token transfer involves the handover of ownership for any
token (subject or object) between subjects in the system.

Accordingly, Address B exercised its MODERA-
TOR ROLE right by creating seven token with a variation
of tTag and delegated the tokens to CUSTODIAN ROLE

and USER ROLE addresses. Figure 2 shows delegation of
the seven tokens to Addresses C, D, E, F, G, H, and I.

Figure 2. Delegation of token subject.

With TRABAC, Level 1 of the access control ensures
only accounts with MODERATOR ROLE are allowed to
create and transfer the token subject (tType = subject).
If another account (DEFAULT ADMIN ROLE, CUSTO-
DIAN ROLE or USER ROLE) attempts to create a token
with tType = subject, an error message will result.

5.2. Token and Activity Creation by CUSTO-

DIAN ROLE

As mentioned in Section 4.2, Address A granted three
accounts with CUSTODIAN ROLE (Addresses C, D, and
E). Figure 2 shows how Address B with MODERA-
TOR ROLE granted Address C, D, and E with different
tTags. The three accounts are able to create token object and
token child AC. However, they are limited to create token
object and AC with their respective tTag only. For example,
Address C holds AGL token with tTag = supplier. As
such, Address C can only create a token object and AC
with tTag or aTag ‘supplier’ only. Figure 3 illustrates
the creation and access of token and activity by CUS-
TODIAN ROLE and USER ROLE in our supply chain
simulation.

Figure 3 show how Address C can create token
AGL8[C] with tType = object and tTag = supplier. On
the other hand, Address D which is in possession of token
AGL2[D] can create token AGL9[D] with tType = object
and tTag = transport. Both Address C and D can only
create a token object with the same tTag token subject for
any token in their possession.

Figure 3 also shows how Addresses C, D, and E can
create AC for their respective tTag. Address C created
AC[AGL8] which is a child of token AGL8[C] with
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Figure 3. Creation and access of token and activity in TRABAC.

aType = data induction and aTag = supplier. On the
other hand, Address D created two ACs for token AGL8[C]
and AGL9[C], respectively. The first AC is AC[AGL8]
with aType = transfer and aTag = transport while
the second AC is AC[AGL9] with aType = travel doc
and aTag = transport. Finally, Address E which holds
tTag = inspection created AC[AGL9]. The AC[AGL9]
is the child of token AGL9[D] with aType = custom doc
and aTag = inspection.

If other accounts that are without a CUSTO-
DIAN ROLE try to create a token object, they will
receive an error message. Even accounts with DE-
FAULT ADMIN ROLE or MODERATOR ROLE will not
have the ability to create a token object. The create activity
(AC) function, is only available to a CUSTODIAN ROLE
if it has a valid tTag can create them.

5.3. Access Request by CUSTODIAN ROLE and

USER ROLE

Similar to token creation, only accounts with a CUS-
TODIAN ROLE and USER ROLE will be able to request
access to tokens or ACs. However, both roles are restricted
to only access tokens or ACs that possess the same tTag as
illustrated in Figure 3. Both the DEFAULT ADMIN ROLE
and the MODERATOR ROLE are not able to access a token
as they do not hold any tokens.

Figure 3 show how Address C and Address F will only
be able to read token AGL8[C] and AC[AGL8] as both
accounts have token with tTag = supplier. For accounts
with tTag = transport, Address D and Address G can
read token AGL9[D], AC[AGL8], and AC[AGL9]. While

Address E and Address H can only read AC[AGL9] because
both accounts have tTag = inspection in their possession.

On the other hand, Address I cannot read any of the
tokens or AC even though the account in possession of
AGL token. As shown in Figure 2, Address B delegate token
AGL7 with tTag = warehouse to Address I. Because there
is no token or AC with the same tTag, Address I will not
be able to access any token object or AC in the experiment.
For Address J, the account does not possess any AGL token.
Thus, it will be automatically prevented from accessing any
asset (token or AC).

5.4. Cost Evaluation

Each transaction on the Ethereum blockchain incur
charges that are calculated using the Ethereum Gas unit.
Each transaction that executes a smart contract has a fixed
base cost. Additionally, the extra cost depends on the com-
plexity of the smart contract and the amount of data stored
in the blockchain.

Table 2 presents the average cost of functions in TRA-
BAC during the course of the experiment as discussed in
previous subsections. The amount of gas used for functions
executions varies depending on the amount of bytecode to
process. The more complex the input, the higher the gas
used, which then leads to a higher execution cost.

TABLE 2. AVERAGE COST OF FUNCTIONS IN TRABAC.

Function Gas Used

addModerator 90,589

addCustodian 80,567

addUser 79,317

createToken 304,497

transferToken 166,229

addActivity 247,81

Figure 4 shows the amount of gas used during the token
creation and token transfer for all nine tokens. Obviously,
the more gas used, the the higher the transaction cost.
The creation of token AGL1 is the most expensive. Token
creation for subsequent six subject tokens used about the
same amount of gas, but slightly lower than token AGL1.
Following this trend, token creation for all token objects
used the same amount of gas and slightly lower than the
creation of token subject.

The work by Nakamura et al. [10] shows similar find-
ings with the pattern of gas consumed for token creation
and where creation of the first token consumed more gas
than the creation of the subsequent tokens. Moreover, they
discovered the relationship between the amount of gas used
and the length of input [10]. By the same notion, we list the
actual gas consumed for each token creation in Table 3.

Based on Table 3, we found that creation of the first
token subject cost an additional 60,000 gas unit compared
to creation of other token subjects. Moreover, creation of
token subjects cost an additional 95,775 gas units than the
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Figure 4. Cost for token creation and token transfer for all nine token.

creation of token objects. It is also worth noting that each
character in the token tag costs 12 gas units. For example,
creation of token AGL3 cost an extra 12 gas units compared
to the creation of token AGL2.

TABLE 3. COST FOR CREATION OF TOKEN.

Token Token Type Token Tag Gas Used

AGL1 subject supplier 365,770

AGL2 subject transport 305,782

AGL3 subject inspection 305,794

AGL4 subject supplier 305,770

AGL5 subject transport 305,782

AGL6 subject inspection 305,794

AGL7 subject warehouse 305,782

AGL8 object supplier 269,995

AGL9 object transport 270,007

Similarly, it appears that there is also a pattern in the
amount of gas used during the token transfer (Figure 4).
The first three token transfers used the same amount of gas,
followed by another three token transfers that cost the same
amount of gas - albeit slightly lower. There was no token
transfer for token AGL8 and AGL9 during the experiment.

6. Conclusion

In this paper, we have addressed the problem of supply
chain access control with the use of smart contracts. Our
proposed access control model, TRABAC has demonstrated
its effectiveness in controlling access between four different
parties, and ensuring data integrity and governance. In par-
ticular, the two-level access control model of TRABAC is
able to deliver flexible and fine-grained access control and
consequently cater to the need of supply chain applications.

Our experimental results with a prototype of TRABAC
confirm our claims. Other notable observations in this paper
are:

• TRABAC is able to address the need of multi-
organization with multi-admin in the supply chain

application with the proposed four roles without
overlapped privileges;

• Level 1 of TRABAC filters unwanted access to smart
contract functions easily with RBAC; and

• ABAC on Level 2 of TRABAC provides fine-grained
access control and limits access to only accounts that
have the correct attributes.

As each transaction on Ethereum blockchain incurs
costs, we plan to seek ways to reduce contract size for cost
reduction. We also plan to investigate the ability to include
an environmental condition as a token tag attribute.
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